June 5, 2018
The main result of this paper is the following: for all $b \in \mathbb Z$ there exists $k=k(b)$ such that \[ \max \{ |A^{(k)}|, |(A+u)^{(k)}| \} \geq |A|^b, \] for any finite $A \subset \mathbb Q$ and any non-zero $u \in \mathbb Q$. Here, $|A^{(k)}|$ denotes the $k$-fold product set $\{a_1\cdots a_k : a_1, \dots, a_k \in A \}$. Furthermore, our method of proof also gives the following $l_{\infty}$ sum-product estimate. For all $\gamma >0$ there exists a constant $C=C(\gamma...
February 29, 2012
We obtain upper bounds on the number of solutions to congruences of the type $$ (x_1+s)...(x_{\nu}+s)\equiv (y_1+s)...(y_{\nu}+s)\not\equiv0 \pmod p $$ modulo a prime $p$ with variables from some short intervals. We give some applications of our results and in particular improve several recent estimates of J. Cilleruelo and M. Z. Garaev on exponential congruences and on cardinalities of products of short intervals, some double character sum estimates of J. B. Friedlander and ...
In our paper, we introduce a new method for estimating incidences via representation theory. We obtain several applications to various sums with multiplicative characters and to Zaremba's conjecture from number theory.
March 15, 2021
We improve the exponent in the finite field sum-product problem from $11/9$ to $5/4$, improving the results of Rudnev, Shakan and Shkredov. That is, we show that if $A\subset \mathbb{F}_p$ has cardinality $|A|\ll p^{1/2}$ then \[ \max\{|A\pm A|,|AA|\} \gtrsim |A|^\frac54 \] and \[ \max\{|A\pm A|,|A/A|\}\gtrsim |A|^\frac54\,. \]
November 11, 2010
This note improves the best known exponent 1/12 in the prime field sum-product inequality (for small sets) to 1/11, modulo a logarithmic factor.
February 1, 2016
The sum-product phenomena over a finite extension K of $\mathbb{Q}_p$ is explored. The main feature of the results is the fact that the implied constants are independent of $p$.
March 19, 2019
Let $\mathbb{F}_q$ denote the finite field with $q$ elements where $q=p^l$ is a prime power. Using Fourier analytic tools with a third moment method, we obtain sum-product type estimates for subsets of $\mathbb{F}_q$. In particular, we prove that if $A\subset \mathbb{F}_q$, then $$|AA+A|,|A(A+A)|\gg\min\left\{q, \frac{|A|^2}{q^{\frac{1}{2}}} \right\},$$ so that if $A\ge q^{\frac{3}{4}}$, then $|AA+A|,|A(A+A)|\gg q$.
September 15, 2006
We prove, using combinatorics and Kloosterman sum technology that if $A \subset {\Bbb F}_q$, a finite field with $q$ elements, and $q^{{1/2}} \lesssim |A| \lesssim q^{{7/10}}$, then $\max \{|A+A|, |A \cdot A|\} \gtrsim \frac{{|A|}^{{3/2}}}{q^{{1/4}}$.
May 23, 2018
In this paper we prove some results on sum-product estimates over arbitrary finite fields. More precisely, we show that for sufficiently small sets $A\subset \mathbb{F}_q$ we have \[|(A-A)^2+(A-A)^2|\gg |A|^{1+\frac{1}{21}}.\] This can be viewed as the Erd\H{o}s distinct distances problem for Cartesian product sets over arbitrary finite fields. We also prove that \[\max\{|A+A|, |A^2+A^2|\}\gg |A|^{1+\frac{1}{42}}, ~|A+A^2|\gg |A|^{1+\frac{1}{84}}.\]
May 29, 2007
We prove that if $A \subset {\Bbb F}_q$ is such that $$|A|>q^{{1/2}+\frac{1}{2d}},$$ then $${\Bbb F}_q^{*} \subset dA^2=A^2+...+A^2 d \text{times},$$ where $$A^2=\{a \cdot a': a,a' \in A\},$$ and where ${\Bbb F}_q^{*}$ denotes the multiplicative group of the finite field ${\Bbb F}_q$. In particular, we cover ${\Bbb F}_q^{*}$ by $A^2+A^2$ if $|A|>q^{{3/4}}$. Furthermore, we prove that if $$|A| \ge C_{size}^{\frac{1}{d}}q^{{1/2}+\frac{1}{2(2d-1)}},$$ then $$|dA^2| \ge q \cdot \...