April 24, 2018
Similar papers 4
May 8, 2016
Detecting community structures in social networks has gained considerable attention in recent years. However, lack of prior knowledge about the number of communities, and their overlapping nature have made community detection a challenging problem. Moreover, many of the existing methods only consider static networks, while most of real world networks are dynamic and evolve over time. Hence, finding consistent overlapping communities in dynamic networks without any prior knowl...
March 1, 2015
A \emph{temporal graph} is, informally speaking, a graph that changes with time. When time is discrete and only the relationships between the participating entities may change and not the entities themselves, a temporal graph may be viewed as a sequence $G_1,G_2\ldots,G_l$ of static graphs over the same (static) set of nodes $V$. Though static graphs have been extensively studied, for their temporal generalization we are still far from having a concrete set of structural and ...
April 22, 2013
Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we...
July 16, 2020
Representation learning of static and more recently dynamically evolving graphs has gained noticeable attention. Existing approaches for modelling graph dynamics focus extensively on the evolution of individual nodes independently of the evolution of mesoscale community structures. As a result, current methods do not provide useful tools to study and cannot explicitly capture temporal community dynamics. To address this challenge, we propose GRADE - a probabilistic model that...
June 24, 2017
Sociotechnological and geospatial processes exhibit time varying structure that make insight discovery challenging. This paper proposes a new statistical model for such systems, modeled as dynamic networks, to address this challenge. It assumes that vertices fall into one of k types and that the probability of edge formation at a particular time depends on the types of the incident nodes and the current time. The time dependencies are driven by unique seasonal processes, whic...
July 24, 2017
The study of time-varying (dynamic) networks (graphs) is of fundamental importance for computer network analytics. Several methods have been proposed to detect the effect of significant structural changes in a time series of graphs. The main contribution of this work is a detailed analysis of a dynamic community graph model. This model is formed by adding new vertices, and randomly attaching them to the existing nodes. It is a dynamic extension of the well-known stochastic bl...
March 7, 2015
We propose a robust, scalable, integrated methodology for community detection and community comparison in graphs. In our procedure, we first embed a graph into an appropriate Euclidean space to obtain a low-dimensional representation, and then cluster the vertices into communities. We next employ nonparametric graph inference techniques to identify structural similarity among these communities. These two steps are then applied recursively on the communities, allowing us to de...
July 25, 2017
Dynamic networks, especially those representing social networks, undergo constant evolution of their community structure over time. Nodes can migrate between different communities, communities can split into multiple new communities, communities can merge together, etc. In order to represent dynamic networks with evolving communities it is essential to use a dynamic model rather than a static one. Here we use a dynamic stochastic block model where the underlying block model i...
May 25, 2017
A nonparametric approach to the modeling of social networks using degree-corrected stochastic blockmodels is proposed. The model for static network consists of a stochastic blockmodel using a probit regression formulation and popularity parameters are incorporated to account for degree heterogeneity. Dirichlet processes are used to detect community structure as well as induce clustering in the popularity parameters. This approach is flexible yet parsimonious as it allows the ...
December 7, 2018
We consider the problem of estimating the location of a single change point in a dynamic stochastic block model. We propose two methods of estimating the change point, together with the model parameters. The first employs a least squares criterion function and takes into consideration the full structure of the stochastic block model and is evaluated at each point in time. Hence, as an intermediate step, it requires estimating the community structure based on a clustering algo...