December 8, 2020
We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics, including for the first time complex structure moduli dependence. Our new methods furthermore improve existing numerical approximations in terms of accuracy and speed. Knowing these metrics has numerous applications, ranging from computations of crucial aspects of the effective field theory of string compactifications such as the canonical normalizations for Yukawa couplings, and the massive string...
June 20, 2019
We investigate different approaches to machine learning of line bundle cohomology on complex surfaces as well as on Calabi-Yau three-folds. Standard function learning based on simple fully connected networks with logistic sigmoids is reviewed and its main features and shortcomings are discussed. It has been observed recently that line bundle cohomology can be described by dividing the Picard lattice into certain regions in each of which the cohomology dimension is described b...
July 12, 2015
We present a generalization of the complete intersection in products of projective space (CICY) construction of Calabi-Yau manifolds. CICY three-folds and four-folds have been studied extensively in the physics literature. Their utility stems from the fact that they can be simply described in terms of a `configuration matrix', a matrix of integers from which many of the details of the geometries can be easily extracted. The generalization we present is to allow negative integ...
November 29, 2020
We briefly overview how, historically, string theory led theoretical physics first to precise problems in algebraic and differential geometry, and thence to computational geometry in the last decade or so, and now, in the last few years, to data science. Using the Calabi-Yau landscape -- accumulated by the collaboration of physicists, mathematicians and computer scientists over the last 4 decades -- as a starting-point and concrete playground, we review some recent progress i...
May 26, 2022
We introduce neural networks to compute numerical Ricci-flat CY metrics for complete intersection and Kreuzer-Skarke Calabi-Yau manifolds at any point in K\"ahler and complex structure moduli space, and introduce the package cymetric which provides computation realizations of these techniques. In particular, we develop and computationally realize methods for point-sampling on these manifolds. The training for the neural networks is carried out subject to a custom loss functio...
December 20, 2021
We apply machine learning to the problem of finding numerical Calabi-Yau metrics. We extend previous work on learning approximate Ricci-flat metrics calculated using Donaldson's algorithm to the much more accurate "optimal" metrics of Headrick and Nassar. We show that machine learning is able to predict the K\"ahler potential of a Calabi-Yau metric having seen only a small sample of training data.
January 21, 2024
Calabi-Yau links are specific $S^1$-fibrations over Calabi-Yau manifolds, when the link is 7-dimensional they exhibit both Sasakian and G2 structures. In this invited contribution to the DANGER proceedings, previous work exhaustively computing Calabi-Yau links and selected topological properties is summarised. Machine learning of these properties inspires new conjectures about their computation, as well as the respective Gr\"obner bases.
April 17, 2024
Gaussian Process Regression, Kernel Support Vector Regression, the random forest, extreme gradient boosting and the generalized linear model algorithms are applied to data of Complete Intersection Calabi-Yau 3-folds. It is shown that Gaussian process regression is the most suitable for learning the Hodge number h^(2,1)in terms of h^(1,1). The performance of this regression algorithm is such that the Pearson correlation coefficient for the validation set is R^2 = 0.9999999995 ...
August 24, 2023
In this brief note we explore the space of genus one and elliptic fibrations within CY manifolds, their organizing principles, and how they relate to the set of all CY manifolds. We provide examples of genus one fibered manifolds that exhibit different Hodge numbers -- and physically lead to different gauge groups - than their Jacobian fibrations. We suggest a physical mechanism for understanding this difference in twisted circle reductions of 6-dimensional compactifications ...
July 3, 2017
We utilize machine learning to study the string landscape. Deep data dives and conjecture generation are proposed as useful frameworks for utilizing machine learning in the landscape, and examples of each are presented. A decision tree accurately predicts the number of weak Fano toric threefolds arising from reflexive polytopes, each of which determines a smooth F-theory compactification, and linear regression generates a previously proven conjecture for the gauge group rank ...