October 30, 2023
We develop a theory of flows in the space of Riemannian metrics induced by neural network gradient descent. This is motivated in part by recent advances in approximating Calabi-Yau metrics with neural networks and is enabled by recent advances in understanding flows in the space of neural networks. We derive the corresponding metric flow equations, which are governed by a metric neural tangent kernel, a complicated, non-local object that evolves in time. However, many archite...
We propose a machine-learning approach to study topological quantities related to the Sasakian and $G_2$-geometries of contact Calabi-Yau $7$-manifolds. Specifically, we compute datasets for certain Sasakian Hodge numbers and for the Crowley-N\"ordstrom invariant of the natural $G_2$-structure of the $7$-dimensional link of a weighted projective Calabi-Yau $3$-fold hypersurface singularity, for each of the 7555 possible $\mathbb{P}^4(\textbf{w})$ projective spaces. These topo...
February 11, 2022
Calabi-Yau manifolds have played a key role in both mathematics and physics, and are particularly important for deriving realistic models of particle physics from string theory. Unfortunately, very little is known about the explicit metrics on these spaces, leaving us unable, for example, to compute particle masses or couplings in these models. We review recent progress in this direction on using numerical approximations to compute the spectrum of the Laplacian on these space...
August 4, 2021
We continue earlier efforts in computing the dimensions of tangent space cohomologies of Calabi-Yau manifolds using deep learning. In this paper, we consider the dataset of all Calabi-Yau four-folds constructed as complete intersections in products of projective spaces. Employing neural networks inspired by state-of-the-art computer vision architectures, we improve earlier benchmarks and demonstrate that all four non-trivial Hodge numbers can be learned at the same time using...
October 30, 2023
We present a collection of explicit formulas for the minimum volume of Sasaki-Einstein 5-manifolds. The cone over these 5-manifolds is a toric Calabi-Yau 3-fold. These toric Calabi-Yau 3-folds are associated with an infinite class of 4d N=1 supersymmetric gauge theories, which are realized as worldvolume theories of D3-branes probing the toric Calabi-Yau 3-folds. Under the AdS/CFT correspondence, the minimum volume of the Sasaki-Einstein base is inversely proportional to the ...
May 29, 2024
We numerically study whether there exist nowhere vanishing harmonic $1$-forms on the real locus of some carefully constructed examples of Calabi-Yau manifolds, which would then give rise to potentially new examples of $G_2$-manifolds and an explicit description of their metrics. We do this in two steps: first, we use a neural network to compute an approximate Calabi-Yau metric on each manifold. Second, we use another neural network to compute an approximately harmonic $1$-for...
May 27, 2024
In this work, we report the results of applying deep learning based on hybrid convolutional-recurrent and purely recurrent neural network architectures to the dataset of almost one million complete intersection Calabi-Yau four-folds (CICY4) to machine-learn their four Hodge numbers $h^{1,1}, h^{2,1}, h^{3,1}, h^{2,2}$. In particular, we explored and experimented with twelve different neural network models, nine of which are convolutional-recurrent (CNN-RNN) hybrids with the R...
March 22, 2023
We survey some recent applications of machine learning to problems in geometry and theoretical physics. Pure mathematical data has been compiled over the last few decades by the community and experiments in supervised, semi-supervised and unsupervised machine learning have found surprising success. We thus advocate the programme of machine learning mathematical structures, and formulating conjectures via pattern recognition, in other words using artificial intelligence to hel...
July 9, 2009
We introduce a simple and very fast algorithm that computes Weil-Petersson metrics on moduli spaces of polarized Calabi-Yau manifolds. Also, by using Donaldson's quantization link between the infinite and finite dimensional G.I.T quotients that describe moduli spaces of varieties, we define a natural sequence of Kaehler metrics. We prove that the sequence converges to the Weil-Petersson metric. We also develop an algorithm that numerically approximates such metrics, and hence...
December 9, 2021
We use the machine learning technique to search the polytope which can result in an orientifold Calabi-Yau hypersurface and the "naive Type IIB string vacua". We show that neural networks can be trained to give a high accuracy for classifying the orientifold property and vacua based on the newly generated orientifold Calabi-Yau database with $h^{1,1}(X) \leq 6$ arXiv:2111.03078. This indicates the orientifold symmetry may already be encoded in the polytope structure. In the e...