October 4, 2023

Daattavya Aggarwal, Yang-Hui He, Elli Heyes, Edward Hirst, Henrique N. Sá Earp, Tomás S. R. Silva

We propose a machine-learning approach to study topological quantities related to the Sasakian and $G_2$-geometries of contact Calabi-Yau $7$-manifolds. Specifically, we compute datasets for certain Sasakian Hodge numbers and for the Crowley-N\"ordstrom invariant of the natural $G_2$-structure of the $7$-dimensional link of a weighted projective Calabi-Yau $3$-fold hypersurface singularity, for each of the 7555 possible $\mathbb{P}^4(\textbf{w})$ projective spaces. These topological quantities are then machine learnt with high accuracy, along with properties of the respective Gr\"obner basis, leading to a vast improvement in computation speeds which may be of independent interest. We observe promising results in machine learning the Sasakian Hodge numbers from the $\mathbb{P}^4(\textbf{w})$ weights alone, using both neural networks and a symbolic regressor which achieve $R^2$ scores of 0.969 and 0.993 respectively, inducing novel conjectures to be raised.

Similar papers 1

January 21, 2024

93% Match

Edward Hirst

Calabi-Yau links are specific $S^1$-fibrations over Calabi-Yau manifolds, when the link is 7-dimensional they exhibit both Sasakian and G2 structures. In this invited contribution to the DANGER proceedings, previous work exhaustively computing Calabi-Yau links and selected topological properties is summarised. Machine learning of these properties inspires new conjectures about their computation, as well as the respective Gr\"obner bases.

September 5, 2020

88% Match

Yang-Hui He, Andre Lukas

Hodge numbers of Calabi-Yau manifolds depend non-trivially on the underlying manifold data and they present an interesting challenge for machine learning. In this letter we consider the data set of complete intersection Calabi-Yau four-folds, a set of about 900,000 topological types, and study supervised learning of the Hodge numbers h^1,1 and h^3,1 for these manifolds. We find that h^1,1 can be successfully learned (to 96% precision) by fully connected classifier and regress...

November 28, 2023

87% Match

Edward Hirst, Tancredi Schettini Gherardini

Calabi-Yau four-folds may be constructed as hypersurfaces in weighted projective spaces of complex dimension 5 defined via weight systems of 6 weights. In this work, neural networks were implemented to learn the Calabi-Yau Hodge numbers from the weight systems, where gradient saliency and symbolic regression then inspired a truncation of the Landau-Ginzburg model formula for the Hodge numbers of any dimensional Calabi-Yau constructed in this way. The approximation always prov...

December 12, 2021

87% Match

David S. Berman, Yang-Hui He, Edward Hirst

We revisit the classic database of weighted-P4s which admit Calabi-Yau 3-fold hypersurfaces equipped with a diverse set of tools from the machine-learning toolbox. Unsupervised techniques identify an unanticipated almost linear dependence of the topological data on the weights. This then allows us to identify a previously unnoticed clustering in the Calabi-Yau data. Supervised techniques are successful in predicting the topological parameters of the hypersurface from its weig...

July 30, 2020

87% Match

Harold Erbin, Riccardo Finotello

We revisit the question of predicting both Hodge numbers $h^{1,1}$ and $h^{2,1}$ of complete intersection Calabi-Yau (CICY) 3-folds using machine learning (ML), considering both the old and new datasets built respectively by Candelas-Dale-Lutken-Schimmrigk / Green-H\"ubsch-Lutken and by Anderson-Gao-Gray-Lee. In real world applications, implementing a ML system rarely reduces to feed the brute data to the algorithm. Instead, the typical workflow starts with an exploratory dat...

86% Match

Yang-Hui He

We present a pedagogical introduction to the recent advances in the computational geometry, physical implications, and data science of Calabi-Yau manifolds. Aimed at the beginning research student and using Calabi-Yau spaces as an exciting play-ground, we intend to teach some mathematics to the budding physicist, some physics to the budding mathematician, and some machine-learning to both. Based on various lecture series, colloquia and seminars given by the author in the past...

October 24, 2023

86% Match

R. Alawadhi, D. Angella, ... , Gherardini T. Schettini

We construct all possible complete intersection Calabi-Yau five-folds in a product of four or less complex projective spaces, with up to four constraints. We obtain $27068$ spaces, which are not related by permutations of rows and columns of the configuration matrix, and determine the Euler number for all of them. Excluding the $3909$ product manifolds among those, we calculate the cohomological data for $12433$ cases, i.e. $53.7 \%$ of the non-product spaces, obtaining $2375...

November 20, 2023

86% Match

Harold Erbin, Riccardo Finotello

We review advancements in deep learning techniques for complete intersection Calabi-Yau (CICY) 3- and 4-folds, with the aim of understanding better how to handle algebraic topological data with machine learning. We first discuss methodological aspects and data analysis, before describing neural networks architectures. Then, we describe the state-of-the art accuracy in predicting Hodge numbers. We include new results on extrapolating predictions from low to high Hodge numbers,...

February 15, 2022

86% Match

Vishnu Jejjala, Washington Taylor, Andrew Turner

We review briefly the characteristic topological data of Calabi--Yau threefolds and focus on the question of when two threefolds are equivalent through related topological data. This provides an interesting test case for machine learning methodology in discrete mathematics problems motivated by physics.

October 18, 2019

85% Match

Anthony Ashmore, Yang-Hui He, Burt Ovrut

We apply machine learning to the problem of finding numerical Calabi-Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on K\"ahler manifolds, we combine conventional curve fitting and machine-learning techniques to numerically approximate Ricci-flat metrics. We show that machine learning is able to predict the Calabi-Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this...