October 4, 2023
We propose a machine-learning approach to study topological quantities related to the Sasakian and $G_2$-geometries of contact Calabi-Yau $7$-manifolds. Specifically, we compute datasets for certain Sasakian Hodge numbers and for the Crowley-N\"ordstrom invariant of the natural $G_2$-structure of the $7$-dimensional link of a weighted projective Calabi-Yau $3$-fold hypersurface singularity, for each of the 7555 possible $\mathbb{P}^4(\textbf{w})$ projective spaces. These topological quantities are then machine learnt with high accuracy, along with properties of the respective Gr\"obner basis, leading to a vast improvement in computation speeds which may be of independent interest. We observe promising results in machine learning the Sasakian Hodge numbers from the $\mathbb{P}^4(\textbf{w})$ weights alone, using both neural networks and a symbolic regressor which achieve $R^2$ scores of 0.969 and 0.993 respectively, inducing novel conjectures to be raised.
Similar papers 1
January 21, 2024
Calabi-Yau links are specific $S^1$-fibrations over Calabi-Yau manifolds, when the link is 7-dimensional they exhibit both Sasakian and G2 structures. In this invited contribution to the DANGER proceedings, previous work exhaustively computing Calabi-Yau links and selected topological properties is summarised. Machine learning of these properties inspires new conjectures about their computation, as well as the respective Gr\"obner bases.
September 5, 2020
Hodge numbers of Calabi-Yau manifolds depend non-trivially on the underlying manifold data and they present an interesting challenge for machine learning. In this letter we consider the data set of complete intersection Calabi-Yau four-folds, a set of about 900,000 topological types, and study supervised learning of the Hodge numbers h^1,1 and h^3,1 for these manifolds. We find that h^1,1 can be successfully learned (to 96% precision) by fully connected classifier and regress...
December 12, 2021
We revisit the classic database of weighted-P4s which admit Calabi-Yau 3-fold hypersurfaces equipped with a diverse set of tools from the machine-learning toolbox. Unsupervised techniques identify an unanticipated almost linear dependence of the topological data on the weights. This then allows us to identify a previously unnoticed clustering in the Calabi-Yau data. Supervised techniques are successful in predicting the topological parameters of the hypersurface from its weig...
November 28, 2023
Calabi-Yau four-folds may be constructed as hypersurfaces in weighted projective spaces of complex dimension 5 defined via weight systems of 6 weights. In this work, neural networks were implemented to learn the Calabi-Yau Hodge numbers from the weight systems, where gradient saliency and symbolic regression then inspired a truncation of the Landau-Ginzburg model formula for the Hodge numbers of any dimensional Calabi-Yau constructed in this way. The approximation always prov...
February 28, 2025
In this manuscript, we demonstrate, by using several regression techniques, that one can machine learn the other independent Hodge numbers of complete intersection Calabi-Yau four-folds and five-folds in terms of $h^{1,1}$ and $h^{2,1}$. Consequently, we combine the Hodge numbers $h^{1,1}$ and $h^{2,1}$ from the complete intersection of Calabi-Yau three-folds, four-folds, and five-folds into a single dataset. We then implemented various classification algorithms on this datas...
July 30, 2020
We revisit the question of predicting both Hodge numbers $h^{1,1}$ and $h^{2,1}$ of complete intersection Calabi-Yau (CICY) 3-folds using machine learning (ML), considering both the old and new datasets built respectively by Candelas-Dale-Lutken-Schimmrigk / Green-H\"ubsch-Lutken and by Anderson-Gao-Gray-Lee. In real world applications, implementing a ML system rarely reduces to feed the brute data to the algorithm. Instead, the typical workflow starts with an exploratory dat...
While the earliest applications of AI methodologies to pure mathematics and theoretical physics began with the study of Hodge numbers of Calabi-Yau manifolds, the topology type of such manifold also crucially depend on their intersection theory. Continuing the paradigm of machine learning algebraic geometry, we here investigate the triple intersection numbers, focusing on certain divisibility invariants constructed therefrom, using the Inception convolutional neural network. ...
We present a pedagogical introduction to the recent advances in the computational geometry, physical implications, and data science of Calabi-Yau manifolds. Aimed at the beginning research student and using Calabi-Yau spaces as an exciting play-ground, we intend to teach some mathematics to the budding physicist, some physics to the budding mathematician, and some machine-learning to both. Based on various lecture series, colloquia and seminars given by the author in the past...
October 24, 2023
We construct all possible complete intersection Calabi-Yau five-folds in a product of four or less complex projective spaces, with up to four constraints. We obtain $27068$ spaces, which are not related by permutations of rows and columns of the configuration matrix, and determine the Euler number for all of them. Excluding the $3909$ product manifolds among those, we calculate the cohomological data for $12433$ cases, i.e. $53.7 \%$ of the non-product spaces, obtaining $2375...
February 15, 2022
We review briefly the characteristic topological data of Calabi--Yau threefolds and focus on the question of when two threefolds are equivalent through related topological data. This provides an interesting test case for machine learning methodology in discrete mathematics problems motivated by physics.