March 27, 2020
Similar papers 2
April 16, 2016
We investigate the thermodynamics of the Schwarzschild-Tangherlini black hole in the context of the generalized uncertainty principle (GUP). The corrections to the Hawking temperature, entropy and the heat capacity are obtained via the modified Hamilton-Jacobi equation. These modifications show that the GUP changes the evolution of the Schwarzschild-Tangherlini black hole. Specially, the GUP effect becomes susceptible when the radius or mass of the black hole approaches the o...
March 17, 2022
We investigate the impact of quantum gravity on accretion onto a modified Schwarzschild black hole within the context of the generalized uncertainty principle (GUP). The minimal measurable length connected to GUP modifies the Schwarzschild black hole, giving it the capacity to accommodate the correction due to quantum gravity. We look at potential critical point locations and calculate the critical speed of the matter accreting. We determine the temperature and total integrat...
November 10, 1997
Accurate and powerful computational methods developed by the author for the wave scattering by black holes allow to obtain the highly non trivial total absorption spectrum of the Black Hole. As well as partial wave phase shifts and cross sections (elastic and inelastic), the angular distribution of absorbed and scattered waves, and the Hawking emission rates. The exact total absorption spectrum of waves by the Black Hole has as a function of frequency a remarkable oscillatory...
December 12, 2003
The absorption cross section for scalar particle impact on a Schwarzschild black hole is found. The process is dominated by two physical phenomena. One of them is the well-known greybody factor that arises from the energy-dependent potential barrier outside the horizon that filters the incoming and outgoing waves. The other is related to the reflection of particles on the horizon (Kuchiev 2003). This latter effect strongly diminishes the cross section for low energies, forcin...
June 25, 2001
Accurate and powerful analytic and computational methods developped by the author allow to obtain the highly non trivial total absorption spectrum of the Black Hole, as well as phase shifts and cross sections (elastic and inelastic), the angular distribution of absorbed and scattered waves, and the Hawking emission rates. The exact total absorption spectrum of waves by the Black Hole presents as a function of frequency a remarkable oscillatory behaviour characteristic of a di...
April 24, 2022
Schwarzschild black holes with quantum corrections are studied under scalar field perturbations and electromagnetic field perturbations to analyze the effect of the correction term on the potential function and quasinormal mode (QNM). In classical general relativity, spacetime is continuous and there is no existence of the so-called minimal length. The introduction of the correction items of the generalized uncertainty principle (GUP), the parameter $\beta$, can change the si...
September 29, 2023
We describe an approach to incorporating the physical effects of the absorption of energy by the event horizon of black holes in the scattering amplitudes based post-Minkowskian, point-particle effective description. Absorptive dynamics are incorporated in a model-independent way by coupling the usual point-particle description to an invisible sector of gapless internal degrees-of-freedom. The leading order dynamics of this sector are encoded in the low-energy expansion of a ...
May 9, 2024
We initiate a general investigation into gravitational wave signatures of modifications to scattering of gravitational radiation from black holes. Such modifications may be present due to the quantum dynamics that makes black holes consistent with quantum mechanics, or in other models for departures from classical black hole behavior. We propose a parameterization of the corrections to scattering as a physically meaningful, model-independent, and practical bridge between theo...
February 27, 2020
In this paper we aim to investigate the process of massless scalar wave scattering due to a self-dual black hole through the partial wave method. We calculate the phase shift analytically at the low energy limit and we show that the dominant term of the differential cross section at the small angle limit is modified by the presence of parameters related to the polymeric function and minimum area of a self-dual black hole. We also find that the result for the absorption cross ...
April 10, 2007
We investigate the effects to all orders in the Planck length from a generalized un- certainty principle (GUP) on black holes thermodynamics. We calculate the corrected Hawking temperature, entropy, and examine in details the Hawking evaporation process. As a result, the evaporation process is accelerated and the evaporation end-point is a zero entropy, zero heat capacity and finite non zero temperature black hole remnant (BHR). In particular we obtain a drastic reduction of ...