September 3, 2020
Similar papers 4
December 25, 2018
Shape is an important physical property of natural and manmade 3D objects that characterizes their external appearances. Understanding differences between shapes and modeling the variability within and across shape classes, hereinafter referred to as \emph{shape analysis}, are fundamental problems to many applications, ranging from computer vision and computer graphics to biology and medicine. This chapter provides an overview of some of the recent techniques that studied the...
April 3, 2024
In recent years there has been increased interest in understanding the interplay between deep generative models (DGMs) and the manifold hypothesis. Research in this area focuses on understanding the reasons why commonly-used DGMs succeed or fail at learning distributions supported on unknown low-dimensional manifolds, as well as developing new models explicitly designed to account for manifold-supported data. This manifold lens provides both clarity as to why some DGMs (e.g. ...
July 12, 2024
The enduring legacy of Euclidean geometry underpins classical machine learning, which, for decades, has been primarily developed for data lying in Euclidean space. Yet, modern machine learning increasingly encounters richly structured data that is inherently nonEuclidean. This data can exhibit intricate geometric, topological and algebraic structure: from the geometry of the curvature of space-time, to topologically complex interactions between neurons in the brain, to the al...
February 12, 2020
Measuring the similarity between data points often requires domain knowledge, which can in parts be compensated by relying on unsupervised methods such as latent-variable models, where similarity/distance is estimated in a more compact latent space. Prevalent is the use of the Euclidean metric, which has the drawback of ignoring information about similarity of data stored in the decoder, as captured by the framework of Riemannian geometry. We propose an extension to the frame...
February 12, 2020
In this paper, we propose a method to learn a minimizing geodesic within a data manifold. Along the learned geodesic, our method can generate high-quality interpolations between two given data samples. Specifically, we use an autoencoder network to map data samples into latent space and perform interpolation via an interpolation network. We add prior geometric information to regularize our autoencoder for the convexity of representations so that for any given interpolation ap...
October 30, 2022
A coordinate system is a foundation for every quantitative science, engineering, and medicine. Classical physics and statistics are based on the Cartesian coordinate system. The classical probability and hypothesis testing theory can only be applied to Euclidean data. However, modern data in the real world are from natural language processing, mathematical formulas, social networks, transportation and sensor networks, computer visions, automations, and biomedical measurements...
November 23, 2017
The analysis of manifold-valued data requires efficient tools from Riemannian geometry to cope with the computational complexity at stake. This complexity arises from the always-increasing dimension of the data, and the absence of closed-form expressions to basic operations such as the Riemannian logarithm. In this paper, we adapt a generic numerical scheme recently introduced for computing parallel transport along geodesics in a Riemannian manifold to finite-dimensional mani...
December 5, 2019
Deep generative networks have been widely used for learning mappings from a low-dimensional latent space to a high-dimensional data space. In many cases, data transformations are defined by linear paths in this latent space. However, the Euclidean structure of the latent space may be a poor match for the underlying latent structure in the data. In this work, we incorporate a generative manifold model into the latent space of an autoencoder in order to learn the low-dimensiona...
May 21, 2018
Convolution has been playing a prominent role in various applications in science and engineering for many years. It is the most important operation in convolutional neural networks. There has been a recent growth of interests of research in generalizing convolutions on curved domains such as manifolds and graphs. However, existing approaches cannot preserve all the desirable properties of Euclidean convolutions, namely compactly supported filters, directionality, transferabil...
May 24, 2023
We present Manifold Diffusion Fields (MDF), an approach that unlocks learning of diffusion models of data in general non-Euclidean geometries. Leveraging insights from spectral geometry analysis, we define an intrinsic coordinate system on the manifold via the eigen-functions of the Laplace-Beltrami Operator. MDF represents functions using an explicit parametrization formed by a set of multiple input-output pairs. Our approach allows to sample continuous functions on manifold...