October 23, 2006
We present an effective unified theory based on noncommutative geometry for the standard model with neutrino mixing, minimally coupled to gravity. The unification is based on the symplectic unitary group in Hilbert space and on the spectral action. It yields all the detailed structure of the standard model with several predictions at unification scale. Besides the familiar predictions for the gauge couplings as for GUT theories, it predicts the Higgs scattering parameter and ...
November 19, 2021
Prior work [arXiv:2106.16248] shows that the Standard Model (SM) naturally arises near a gapless quantum critical region between Georgi-Glashow (GG) $su(5)$ and Pati-Salam (PS) $su(4) \times su(2) \times su(2)$ models of quantum vacua (in a phase diagram or moduli space), by implementing a modified $so(10)$ Grand Unification (GUT) with a Spin(10) gauge group plus a new discrete Wess-Zumino Witten term matching a 4d nonperturbative global mixed gauge-gravity $w_2 w_3$ anomaly....
November 15, 2019
This article presents a number of technical tools and results that may be instrumental to discern the nature of the Higgs particle. In scenarios where an additional strongly interacting sector is present in the electroweak theory resulting in a composite Higgs and longitudinal components of the massive gauge bosons, unitarity, analyticity and related techniques will be crucial to understand the properties of such a sector. The situation today may be reminiscent of the pre-QCD...
August 5, 1993
Supersymmetry (SUSY) has many well known attractions, especially in the context of Grand Unified Theories (GUTs). SUSY stabilizes scalar mass corrections (the hierarchy problem), greatly reduces the number of free parameters, facilitates gauge coupling unification, and provides a plausible candidate for cosmological dark matter. In this conference report we survey some recent examples of progress in SUSY-GUT applications.
May 12, 2006
In this essay we wish to seek a unifying thread between the basic forces. We propose that there exists a universal force which is shared by all that physically exists. Universality is characterized by the two properties: (i) universal linkage and (ii) long range. They uniquely identify Einstein gravity as the unversal force. All other forces then arise as these properties are peeled off. For instance, relaxing (i) but retaining (ii) will lead to Maxwell electromagnetic force....
September 16, 1993
A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of $SU(2) \times U(1)$, proton decay, cosmological constraints, and predictions of supergravity grand u...
September 19, 1994
Talk given at Frontiers in Particle Physics Conference, Cargese. In this paper, I provide some motivation for supersymmetric grand unified theories, briefly explain an extension of the standard model based on them and present a calculation performed using certain properties of some SUSY GUTs to constrain the available parameter space.
March 1, 2017
This paper discovers geometric unification theory of the grand unification and gravitational interactions and their new physics according to the general fiber bundle theory, symmetry and so on. Consequently, the research of this paper is based on the exact scientific bases of mathematics and physics. The Lagrangians of the grand unification and gravitational interactions are unifiedly deduced from quantitative causal principle (QCP) and satisfy the gauge invariant principle o...
October 1, 2021
Gauge symmetries play an essential role in determining the interactions of particle physics. Where do they come from? Might the gauge symmetries of the Standard Model unify in the ultraviolet or might they be emergent in the infrared, below some large scale close to the Planck scale? Emergent gauge symmetries are important in quantum many-body systems in quantum phases associated with long range entanglement and topological order, e.g., they arise in high temperature supercon...
November 12, 2012
We consider a weakly coupled gauge theory where charged particles all have large gaps (ie no Higgs condensation to break the gauge "symmetry") and the field strength fluctuates only weakly. We ask what kind of topological terms can be added to the Lagrangian of such a weakly coupled gauge theory. In this paper, we systematically construct quantized topological terms which are generalization of the Chern-Simons terms and $F\wedge F$ terms, in space-time dimensions $d$ and for ...