March 8, 2021
Similar papers 4
November 21, 2022
Large-scale integration of intermittent renewable energy sources calls for substantial demand side flexibility. Given that the built environment accounts for approximately 40% of total energy consumption in EU, unlocking its flexibility is a key step in the energy transition process. This paper focuses specifically on energy flexibility in residential buildings, leveraging their intrinsic thermal mass. Building on recent developments in the field of data-driven control, we pr...
August 30, 2022
We draw on the latest advancements in the physics community to propose a novel method for discovering the governing non-linear dynamics of physical systems in reinforcement learning (RL). We establish that this method is capable of discovering the underlying dynamics using significantly fewer trajectories (as little as one rollout with $\leq 30$ time steps) than state of the art model learning algorithms. Further, the technique learns a model that is accurate enough to induce...
May 1, 1996
This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differ...
June 27, 2019
Policy gradient based reinforcement learning algorithms coupled with neural networks have shown success in learning complex policies in the model free continuous action space control setting. However, explicitly parameterized policies are limited by the scope of the chosen parametric probability distribution. We show that alternatively to the likelihood based policy gradient, a related objective can be optimized through advantage weighted quantile regression. Our approach mod...
October 23, 2022
Climate Change is an incredibly complicated problem that humanity faces. When many variables interact with each other, it can be difficult for humans to grasp the causes and effects of the very large-scale problem of climate change. The climate is a dynamical system, where small changes can have considerable and unpredictable repercussions in the long term. Understanding how to nudge this system in the right ways could help us find creative solutions to climate change. In t...
July 1, 2021
We introduce a Python package that provides simply and unified access to a collection of datasets from fundamental physics research - including particle physics, astroparticle physics, and hadron- and nuclear physics - for supervised machine learning studies. The datasets contain hadronic top quarks, cosmic-ray induced air showers, phase transitions in hadronic matter, and generator-level histories. While public datasets from multiple fundamental physics disciplines already e...
December 19, 2013
We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. We apply our method to seven Atari 2600 games from the Arcade Learning Environment, with no adjustment of the architecture or learning algorithm. We fin...
June 23, 2018
In recent years, a specific machine learning method called deep learning has gained huge attraction, as it has obtained astonishing results in broad applications such as pattern recognition, speech recognition, computer vision, and natural language processing. Recent research has also been shown that deep learning techniques can be combined with reinforcement learning methods to learn useful representations for the problems with high dimensional raw data input. This chapter r...
January 19, 2022
This textbook covers principles behind main modern deep reinforcement learning algorithms that achieved breakthrough results in many domains from game AI to robotics. All required theory is explained with proofs using unified notation and emphasize on the differences between different types of algorithms and the reasons why they are constructed the way they are.
November 27, 2022
A central problem in computational biophysics is protein structure prediction, i.e., finding the optimal folding of a given amino acid sequence. This problem has been studied in a classical abstract model, the HP model, where the protein is modeled as a sequence of H (hydrophobic) and P (polar) amino acids on a lattice. The objective is to find conformations maximizing H-H contacts. It is known that even in this reduced setting, the problem is intractable (NP-hard). In this w...