ID: 2209.10157

Machine Learning on generalized Complete Intersection Calabi-Yau Manifolds

September 21, 2022

View on ArXiv

Similar papers 4

Neural Network Approximations for Calabi-Yau Metrics

December 31, 2020

84% Match
Vishnu Jejjala, Damian Kaloni Mayorga Pena, Challenger Mishra
Machine Learning
Algebraic Geometry
Differential Geometry

Ricci flat metrics for Calabi-Yau threefolds are not known analytically. In this work, we employ techniques from machine learning to deduce numerical flat metrics for the Fermat quintic, for the Dwork quintic, and for the Tian-Yau manifold. This investigation employs a single neural network architecture that is capable of approximating Ricci flat Kaehler metrics for several Calabi-Yau manifolds of dimensions two and three. We show that measures that assess the Ricci flatness ...

Find SimilarView on arXiv

Calabi-Yau Spaces in the String Landscape

June 30, 2020

84% Match
Yang-Hui He
Algebraic Geometry

Calabi-Yau spaces, or Kahler spaces admitting zero Ricci curvature, have played a pivotal role in theoretical physics and pure mathematics for the last half-century. In physics, they constituted the first and natural solution to compactification of superstring theory to our 4-dimensional universe, primarily due to one of their equivalent definitions being the admittance of covariantly constant spinors. Since the mid-1980s, physicists and mathematicians have joined forces in c...

Find SimilarView on arXiv

On Calabi-Yau generalized complete intersections from Hirzebruch varieties and novel K3-fibrations

June 23, 2016

84% Match
Per Berglund, Tristan Hubsch
Algebraic Geometry

We consider the construction of Calabi-Yau varieties recently generalized to where the defining equations may have negative degrees over some projective space factors in the embedding space. Within such "generalized complete intersection" Calabi-Yau ("gCICY") three-folds, we find several sequences of distinct manifolds. These include both novel elliptic and K3-fibrations and involve Hirzebruch surfaces and their higher dimensional analogues. En route, we generalize the standa...

Find SimilarView on arXiv

Machine Learning of Calabi-Yau Volumes

June 11, 2017

84% Match
Daniel Krefl, Rak-Kyeong Seong
Algebraic Geometry

We employ machine learning techniques to investigate the volume minimum of Sasaki-Einstein base manifolds of non-compact toric Calabi-Yau 3-folds. We find that the minimum volume can be approximated via a second order multiple linear regression on standard topological quantities obtained from the corresponding toric diagram. The approximation improves further after invoking a convolutional neural network with the full toric diagram of the Calabi-Yau 3-folds as the input. We a...

Find SimilarView on arXiv

Machine Learning Kreuzer--Skarke Calabi--Yau Threefolds

December 16, 2021

84% Match
Per Berglund, Ben Campbell, Vishnu Jejjala
Machine Learning
Algebraic Geometry

Using a fully connected feedforward neural network we study topological invariants of a class of Calabi--Yau manifolds constructed as hypersurfaces in toric varieties associated with reflexive polytopes from the Kreuzer--Skarke database. In particular, we find the existence of a simple expression for the Euler number that can be learned in terms of limited data extracted from the polytope and its dual.

Find SimilarView on arXiv

Learning Size and Shape of Calabi-Yau Spaces

November 2, 2021

83% Match
Magdalena Larfors, Andre Lukas, ... , Schneider Robin
Machine Learning

We present a new machine learning library for computing metrics of string compactification spaces. We benchmark the performance on Monte-Carlo sampled integrals against previous numerical approximations and find that our neural networks are more sample- and computation-efficient. We are the first to provide the possibility to compute these metrics for arbitrary, user-specified shape and size parameters of the compact space and observe a linear relation between optimization of...

Find SimilarView on arXiv

Deep-Learning the Landscape

June 8, 2017

83% Match
Yang-Hui He
Algebraic Geometry
Machine Learning

We propose a paradigm to deep-learn the ever-expanding databases which have emerged in mathematical physics and particle phenomenology, as diverse as the statistics of string vacua or combinatorial and algebraic geometry. As concrete examples, we establish multi-layer neural networks as both classifiers and predictors and train them with a host of available data ranging from Calabi-Yau manifolds and vector bundles, to quiver representations for gauge theories. We find that ev...

Find SimilarView on arXiv

Harmonic $1$-forms on real loci of Calabi-Yau manifolds

May 29, 2024

83% Match
Michael R. Douglas, Daniel Platt, Yidi Qi
Differential Geometry

We numerically study whether there exist nowhere vanishing harmonic $1$-forms on the real locus of some carefully constructed examples of Calabi-Yau manifolds, which would then give rise to potentially new examples of $G_2$-manifolds and an explicit description of their metrics. We do this in two steps: first, we use a neural network to compute an approximate Calabi-Yau metric on each manifold. Second, we use another neural network to compute an approximately harmonic $1$-for...

Find SimilarView on arXiv

Fibrations in CICY Threefolds

August 25, 2017

83% Match
Lara B. Anderson, Xin Gao, ... , Lee Seung-Joo
High Energy Physics - Theory

In this work we systematically enumerate genus one fibrations in the class of 7,890 Calabi-Yau manifolds defined as complete intersections in products of projective spaces, the so-called CICY threefolds. This survey is independent of the description of the manifolds and improves upon past approaches that probed only a particular algebraic form of the threefolds (i.e. searches for "obvious" genus one fibrations as in [1,2]). We also study K3-fibrations and nested fibration str...

Find SimilarView on arXiv

Machine Learning in Physics and Geometry

March 22, 2023

83% Match
Yang-Hui He, Elli Heyes, Edward Hirst
Algebraic Geometry
Mathematical Physics

We survey some recent applications of machine learning to problems in geometry and theoretical physics. Pure mathematical data has been compiled over the last few decades by the community and experiments in supervised, semi-supervised and unsupervised machine learning have found surprising success. We thus advocate the programme of machine learning mathematical structures, and formulating conjectures via pattern recognition, in other words using artificial intelligence to hel...

Find SimilarView on arXiv