September 21, 2022
Similar papers 5
October 24, 2021
We study the use of machine learning for finding numerical hermitian Yang-Mills connections on line bundles over Calabi-Yau manifolds. Defining an appropriate loss function and focusing on the examples of an elliptic curve, a K3 surface and a quintic threefold, we show that neural networks can be trained to give a close approximation to hermitian Yang-Mills connections.
April 21, 2022
We review some recent applications of machine learning to algebraic geometry and physics. Since problems in algebraic geometry can typically be reformulated as mappings between tensors, this makes them particularly amenable to supervised learning. Additionally, unsupervised methods can provide insight into the structure of such geometrical data. At the heart of this programme is the question of how geometry can be machine learned, and indeed how AI helps one to do mathematics...
October 19, 2020
The systematic program of heterotic line bundle model building has resulted in a wealth of standard-like models (SLM) for particle physics. In this paper, we continue this work in the setting of generalised Complete Intersection Calabi Yau (gCICY) manifolds. Using the gCICYs constructed in Ref. [1], we identify two geometries that, when combined with line bundle sums, are directly suitable for heterotic GUT models. We then show that these gCICYs admit freely acting $\mathbb{Z...
November 15, 2018
We provide the first estimate of the number of fine, regular, star triangulations of the four-dimensional reflexive polytopes, as classified by Kreuzer and Skarke (KS). This provides an upper bound on the number of Calabi-Yau threefold hypersurfaces in toric varieties. The estimate is performed with deep learning, specifically the novel equation learner (EQL) architecture. We demonstrate that EQL networks accurately predict numbers of triangulations far beyond the $h^{1,1}$ t...
August 1, 2013
With a bird's-eye view, we survey the landscape of Calabi-Yau threefolds, compact and non-compact, smooth and singular. Emphasis will be placed on the algorithms and databases which have been established over the years, and how they have been useful in the interaction between the physics and the mathematics, especially in string and gauge theories. A skein which runs through this review will be algorithmic and computational algebraic geometry and how, implementing its princip...
March 16, 2010
In order to find novel examples of non-simply connected Calabi-Yau threefolds, free quotients of complete intersections in products of projective spaces are classified by means of a computer search. More precisely, all automorphisms of the product of projective spaces that descend to a free action on the Calabi-Yau manifold are identified.
January 6, 2022
In this article, we present a classification for the divisor topologies of the projective complete intersection Calabi-Yau (pCICY) 3-folds realized as hypersurfaces in the product of complex projective spaces. There are 7890 such pCICYs of which 7820 are favorable, and can be subsequently useful for phenomenological purposes. To our surprise we find that the whole pCICY database results in only 11 (so-called coordinate) divisors $(D)$ of distinct topology and we classify thos...
October 30, 2023
We present a collection of explicit formulas for the minimum volume of Sasaki-Einstein 5-manifolds. The cone over these 5-manifolds is a toric Calabi-Yau 3-fold. These toric Calabi-Yau 3-folds are associated with an infinite class of 4d N=1 supersymmetric gauge theories, which are realized as worldvolume theories of D3-branes probing the toric Calabi-Yau 3-folds. Under the AdS/CFT correspondence, the minimum volume of the Sasaki-Einstein base is inversely proportional to the ...
November 29, 2020
We briefly overview how, historically, string theory led theoretical physics first to precise problems in algebraic and differential geometry, and thence to computational geometry in the last decade or so, and now, in the last few years, to data science. Using the Calabi-Yau landscape -- accumulated by the collaboration of physicists, mathematicians and computer scientists over the last 4 decades -- as a starting-point and concrete playground, we review some recent progress i...
December 17, 2021
In a previous work, we proposed a geometric framework to study a deep neural network, seen as sequence of maps between manifolds, employing singular Riemannian geometry. In this paper, we present an application of this framework, proposing a way to build the class of equivalence of an input point: such class is defined as the set of the points on the input manifold mapped to the same output by the neural network. In other words, we build the preimage of a point in the output ...