April 27, 2023
Similar papers 4
December 22, 2021
We present exact numerical data for the lowest-energy momentum eigenstates (yrast states) of a repulsive spin impurity in a one-dimensional Bose gas using full configuration interaction quantum Monte Carlo (FCIQMC). As a stochastic extension to exact diagonalization it is well suited for the study of yrast states of a lattice-renormalized model for a quantum gas. Yrast states carry valuable information about the dynamic properties of slow-moving mobile impurities immersed in ...
April 23, 2022
We investigate the formation of magnetic Bose polaron, an impurity atom dressed by spin-wave excitations, in a one-dimensional spinor Bose gas. In terms of an effective potential model the impurity is strongly confined by the host excitations which can even overcome the impurity-medium repulsion leading to a self-localized quasi-particle state. The phase diagram of the attractive and self-bound repulsive magnetic polaron, repulsive non-magnetic (Fr{\" o}hlich-type) polaron an...
September 30, 2015
The Fr\"ohlich model describes the interaction of a mobile impurity with a surrounding bath of phonons which leads to the formation of a quasiparticle, the polaron. In this article an efficient renormalization group approach is presented which provides a description of Fr\"ohlich polarons in all regimes ranging from weak- to strong coupling. We apply the method to the Bose polaron problem of an ultracold impurity atom interacting with a background gas that is Bose-condensed. ...
November 27, 2020
We investigate the crossover of the impurity-induced dynamics, in trapped one-dimensional Bose polarons subject to radio frequency (rf) pulses of varying intensity, from an adiabatic to a diabatic regime. Utilizing adiabatic pulses for either weak repulsive or attractive impurity-medium interactions, a multitude of polaronic excitations or mode-couplings of the impurity-bath interaction with the collective breathing motion of the bosonic medium are spectrally resolved. We fin...
July 2, 2019
We study the properties of Bose polarons in two dimensions using quantum Monte Carlo techniques. Results for the binding energy, the effective mass, and the quasiparticle residue are reported for a typical strength of interactions in the gas and for a wide range of impurity-gas coupling strengths. A lower and an upper branch of the quasiparticle exist. The lower branch corresponds to an attractive polaron and spans from the regime of weak coupling where the impurity acts as a...
January 22, 2024
The Bose polaron is a quasiparticle that arises from the interaction between impurities and Bogoliubov excitation in Bose-Einstein condensates, analogous to the polaron formed by electrons and phonons in solid-state physics. In this paper, we investigate the effect of phase separation on weakly coupled and strongly coupled Bose polarons. Our findings reveal that phase separation induces a remarkable alteration in the properties of weakly coupled Bose polarons. However, in the...
October 26, 2018
We investigate the formation of a Bose polaron when a single impurity in a Bose-Einstein condensate is quenched from a non-interacting to an attractively interacting state in the vicinity of a Feshbach resonance. We use a beyond-Fr\"ohlich Hamiltonian to describe both sides of the resonance and a coherent-state variational ansatz to compute the time evolution of boson density profiles in position space. We find that on the repulsive side of the Feshbach resonance, the Bose po...
July 19, 2019
We study the non-equilibrium dynamics of relaxation and dressing of a mobile impurity suddenly immersed--or quenched-- into a zero temperature homogeneous Bose Einstein condensate (BEC) with velocity $v$. A many body generalization of Weisskopf-Wigner theory is implemented to obtain the impurity fidelity, reduced density matrix and entanglement entropy. The dynamics depend crucially on the Mach number $\beta =v/c$, with $c$ the speed of sound of superfluid phonons and feature...
November 1, 2022
We study the quantum dynamics of the two impurities in a trapped quasi-one-dimensional Bose-Einstein condensate (BEC). We explore the effect of impurity-BEC and impurity-impurity interaction strengths on the dynamics of impurities inside the Bose-Einstein condensate. By studying the auto-correlation function of impurities and the BEC, we analyze and quantify the trapping of impurities inside the BEC. We find out that for the small value of inter-species coupling strength the ...
June 12, 2024
We study the quantum dynamics of a homogeneous ideal Fermi gas coupled to an impurity particle on a three-dimensional box with periodic boundary condition. For large Fermi momentum $k_\text{F}$, we prove that the effective dynamics is generated by a Fr\"ohlich-type polaron Hamiltonian, which linearly couples the impurity particle to an almost-bosonic excitation field. Moreover, we prove that the effective dynamics can be approximated by an explicit coupled coherent state. Our...