April 27, 2023
Similar papers 3
December 5, 2017
We study the ground state of a one-dimensional (1D) trapped Bose gas with two mobile impurity particles. To investigate this set-up, we develop a variational procedure in which the coordinates of the impurity particles are slow-like variables. We validate our method using the exact results obtained for small systems. Then, we discuss energies and pair densities for systems that contain of the order of one hundred atoms. We show that bosonic non-interacting impurities cluster....
A mobile impurity particle immersed in a quantum fluid forms a polaron - a quasiparticle consisting of the impurity and a local disturbance of the fluid around it. We ask what happens to a one-dimensional polaron after a kick, i.e. an abrupt application of a force that instantly delivers a finite impulse to the impurity. In the framework of an integrable model describing an impurity in a one-dimensional gas of fermions or hard-core bosons, we calculate the distribution of the...
August 30, 2017
We consider a mobile impurity immersed in a Bose gas at finite temperature. Using perturbation theory valid for weak coupling between the impurity and the bosons, we derive analytical results for the energy and damping of the impurity for low and high temperatures, as well as for temperatures close to the critical temperature $T_c$ for Bose-Einstein condensation. These results show that the properties of the impurity vary strongly with temperature. In particular, the energy e...
June 26, 2018
We study the quantum dynamics of a single impurity following its sudden immersion into a Bose-Einstein condensate. The ensuing formation of the Bose polaron in this general setting can be seen as impurity decoherence driven by the condensate, which we describe within a master equation approach. We derive rigorous analytical results for this decoherence dynamics, and thereby reveal distinct stages of its evolution from a universal stretched exponential initial relaxation to th...
June 4, 2011
Using a species-selective dipole potential, we create initially localized impurities and investigate their interactions with a majority species of bosonic atoms in a one-dimensional configuration during expansion. We find an interaction-dependent amplitude reduction of the oscillation of the impurities' size with no measurable frequency shift, and study it as a function of the interaction strength. We discuss possible theoretical interpretations of the data. We compare, in pa...
November 4, 2021
We investigate the polaronic properties of a single impurity immersed in a weakly interacting bosonic environment confined within a one-dimensional double-well potential using an exact diagonalization approach. We find that an increase of the impurity-bath coupling results in a vanishing residue, signifying the occurrence of the polaron orthogonality catastrophe. Asymptotic configurations of the systems' ground state wave function in the strongly interacting regime are obtain...
April 9, 2017
We use a non-perturbative renormalization group approach to develop a unified picture of the Bose polaron problem, where a mobile impurity is strongly interacting with a surrounding Bose-Einstein condensate (BEC). A detailed theoretical analysis of the phase diagram is presented and the polaron-to-molecule transition is discussed. For attractive polarons we argue that a description in terms of an effective Fr\"ohlich Hamiltonian with renormalized parameters is possible. Its s...
January 12, 2022
An impurity in a Bose gas is commonly referred to as Bose polaron. For a dilute Bose gas its properties are expected to be universal, that is dependent only on a few parameters characterizing the boson-impurity interactions. When boson-impurity interactions are weak, it has been known for some time that the properties of the polaron depend only on the scattering length of these interactions. In this paper which accompanies and extends Ref. [Phys. Rev. Lett. 126, 123403 (2021)...
September 28, 2015
In this work we study the formation and dynamics of polarons in a system with a few impurities in a lattice immersed in a Bose-Einstein condensate (BEC). This system has been experimentally realized using ultracold atoms and optical lattices. Here we consider a two-band model for the impurity atoms, along with a Bogoliubov approximation for the BEC, with phonons coupled to impurities via both intra- and inter-band transitions. We decouple this Fr\"ohlich-like term by an exten...
June 15, 2023
Important properties of complex quantum many-body systems and their phase diagrams can often already be inferred from the impurity limit. The Bose polaron problem describing an impurity atom immersed in a Bose-Einstein condensate is a paradigmatic example. One of the most interesting features of this model is the competition between the emergent impurity-mediated attraction between the bosons and their intrinsic repulsion. The arising higher-order correlations make the physic...