April 27, 2023
Similar papers 5
March 15, 2021
We study a weakly-interacting one-dimensional Bose gas with two impurities coupled locally to the boson density. We derive analytical results for the induced interaction between the impurities at arbitrary coupling and separation $r$. At $r\lesssim \xi$, where $\xi$ denotes the healing length of the Bose gas, the interaction is well described by the mean-field contribution. Its form changes as the coupling is increased, approaching a linear function of $r$ at short distances ...
February 12, 2021
We investigate the problem of an infinitely heavy impurity interacting with a dilute Bose gas at zero temperature. When the impurity-boson interactions are short ranged, we show that boson-boson interactions induce a quantum blockade effect, where a single boson can effectively block or screen the impurity potential. Since this behavior depends on the quantum granular nature of the Bose gas, it cannot be captured within a standard classical-field description. Using a combinat...
April 25, 2017
We study the dynamics of a quantum impurity immersed in a Bose-Einstein condensate as an open quantum system in the framework of the quantum Brownian motion model. We derive a generalized Langevin equation for the position of the impurity. The Langevin equation is an integrodifferential equation that contains a memory kernel and is driven by a colored noise. These result from considering the environment as given by the degrees of freedom of the quantum gas, and thus depend on...
November 15, 2018
We exactly analyze, on the mean-field level, the low-momentum properties of a single impurity atom loaded in the dilute one-dimensional Bose gas with two- and three-body short-range interactions. Particularly the Bose polaron binding energy and the quasiparticle residue are calculated for the considered system in the broad region of parameters change. We also explore the generic mean-field formula for the polaron effective mass which was shown to depend on the density profile...
August 15, 2013
We study the properties of the Bose polaron, an impurity strongly interacting with a Bose-Einstein condensate, using a field-theoretic approach and make predictions for the spectral function and various quasiparticle properties that can be tested in experiment. We find that most of the spectral weight is contained in a coherent attractive and a metastable repulsive polaron branch. We show that the qualitative behavior of the Bose polaron is well described by a non-selfconsist...
June 24, 2009
The description of an impurity atom in a Bose-Einstein condensate can be cast in the form of Frohlich's polaron Hamiltonian, where the Bogoliubov excitations play the role of the phonons. An expression for the corresponding polaronic coupling strength is derived, relating the coupling strength to the scattering lengths, the trap size and the number of Bose condensed atoms. This allows to identify several approaches to reach the strong-coupling limit for the quantum gas polaro...
January 11, 2006
A neutral impurity atom immersed in a dilute Bose-Einstein condensate (BEC) can have a bound ground state in which the impurity is self-localized. In this small polaron-like state, the impurity distorts the density of the surrounding BEC, thereby creating the self-trapping potential minimum. We describe the self-localization in a strong coupling approach.
December 7, 2020
We unravel the polaronic properties of impurities immersed in a correlated trapped one-dimensional (1D) Bose-Bose mixture. This setup allows for the impurities to couple either attractively or repulsively to a specific host, thus offering a highly flexible platform for steering the emergent polaronic properties. Specifically, the polaronic residue peak and strength of induced interactions can be controlled by varying the coupling of the impurities to the individual bosonic co...
November 12, 2020
We give a detailed account of a stationary impurity in an ideal Bose-Einstein condensate, which we call the ideal Bose polaron, at both zero and non-zero temperatures and arbitrary strength of the impurity-boson coupling. The time evolution is solved exactly and it is found that, surprisingly, many of the features that have been predicted for the real BEC are already present in this simpler setting and can be understood analytically therein. We obtain explicit formulae for th...
July 9, 2021
We study the Bose polaron problem in a nonequilibrium setting, by considering an impurity embedded in a quantum fluid of light realized by exciton-polaritons in a microcavity, subject to a coherent drive and dissipation on account of pump and cavity losses. We obtain the polaron effective mass, the drag force acting on the impurity, and determine polaron trajectories at a semiclassical level. We find different dynamical regimes, originating from the unique features of the exc...