ID: 2305.04038

The sum-product problem for integers with few prime factors

May 6, 2023

View on ArXiv

Similar papers 2

Sum-product estimates in finite fields

September 15, 2006

87% Match
D. Hart, A. Iosevich, J. Solymosi
Combinatorics
Classical Analysis and ODEs

We prove, using combinatorics and Kloosterman sum technology that if $A \subset {\Bbb F}_q$, a finite field with $q$ elements, and $q^{{1/2}} \lesssim |A| \lesssim q^{{7/10}}$, then $\max \{|A+A|, |A \cdot A|\} \gtrsim \frac{{|A|}^{{3/2}}}{q^{{1/4}}$.

Find SimilarView on arXiv

An improved sum-product estimate over finite fields

May 31, 2011

87% Match
Liangpan Li, Oliver Roche-Newton
Combinatorics

This paper gives an improved sum-product estimate for subsets of a finite field whose order is not prime. It is shown, under certain conditions, that $$\max\{|A+A|,|A\cdot{A}|\}\gg{\frac{|A|^{12/11}}{(\log_2|A|)^{5/11}}}.$$ This new estimate matches, up to a logarithmic factor, the current best known bound obtained over prime fields by Rudnev (\cite{mishaSP}).

Find SimilarView on arXiv

New results on sum-products in R

February 10, 2016

87% Match
Sergei Konyagin, Ilya D. Shkredov
Combinatorics
Number Theory

We improve a previous sum--products estimates in R, namely, we obtain that max{|A+A|,|AA|} \gg |A|^{4/3+c}, where c any number less than 5/9813. New lower bounds for sums of sets with small the product set are found. Also we prove some pure energy sum--products results, improving a result of Balog and Wooley, in particular.

Find SimilarView on arXiv

The sum-product estimate for large subsets of prime fields

June 5, 2007

87% Match
M. Z. Garaev
Number Theory
Combinatorics

Let $\mathbb{F}_p$ be the field of a prime order $p.$ It is known that for any integer $N\in [1,p]$ one can construct a subset $A\subset\mathbb{F}_p$ with $|A|= N$ such that $$ \max\{|A+A|, |AA|\}\ll p^{1/2}|A|^{1/2}. $$ In the present paper we prove that if $A\subset \mathbb{F}_p$ with $|A|>p^{2/3},$ then $$ \max\{|A+A|, |AA|\}\gg p^{1/2}|A|^{1/2}. $$

Find SimilarView on arXiv

An upper bound on the multiplicative energy

June 5, 2008

87% Match
Jozsef Solymosi
Combinatorics

We prove that the sumset or the productset of any finite set of real numbers, $A,$ is at least $|A|^{4/3-\epsilon},$ improving earlier bounds. Our main tool is a new upper bound on the multiplicative energy, $E(A,A).$

Find SimilarView on arXiv

Energy estimates in sum-product and convexity problems

September 10, 2021

87% Match
Akshat Mudgal
Combinatorics
Number Theory

We prove a new class of low-energy decompositions which, amongst other consequences, imply that any finite set $A$ of integers may be written as $A = B \cup C$, where $B$ and $C$ are disjoint sets satisfying \[ |\{ (b_1, \dots, b_{2s}) \in B^{2s} \ | \ b_1 + \dots + b_{s} = b_{s+1} + \dots + b_{2s}\}| \ll_{s} |B|^{2s - (\log \log s)^{1/2 - o(1)}} \] and \[ |\{ (c_1, \dots, c_{2s}) \in C^{2s} \ | \ c_1 \dots c_{s} = c_{s+1} \dots c_{2s} \}| \ll_{s} |C|^{2s - (\log \log s)^{1/2...

Find SimilarView on arXiv

Breaking the 6/5 threshold for sums and products modulo a prime

June 19, 2018

87% Match
G. Shakan, I. D. Shkredov
Combinatorics
Number Theory

Let $A \subset \mathbb{F}_p$ of size at most $p^{3/5}$. We show $$|A+A| + |AA| \gtrsim |A|^{6/5 + c},$$ for $c = 4/305$. Our main tools are the cartesian product point--line incidence theorem of Stevens and de Zeeuw and the theory of higher energies developed by the second author.

Find SimilarView on arXiv

A new sum-product estimate in prime fields

July 29, 2018

87% Match
Changhao Chen, Bryce Kerr, Ali Mohammadi
Combinatorics
Number Theory

In this paper we obtain a new sum-product estimate in prime fields. In particular, we show that if $A\subseteq \mathbb{F}_p$ satisfies $|A|\le p^{64/117}$ then $$ \max\{|A\pm A|, |AA|\} \gtrsim |A|^{39/32}. $$ Our argument builds on and improves some recent results of Shakan and Shkredov which use the eigenvalue method to reduce to estimating a fourth moment energy and the additive energy $E^+(P)$ of some subset $P\subseteq A+A$. Our main novelty comes from reducing the estim...

Find SimilarView on arXiv

A short proof of a near-optimal cardinality estimate for the product of a sum set

February 19, 2015

86% Match
Oliver Roche-Newton
Combinatorics

In this note it is established that, for any finite set $A$ of real numbers, there exist two elements $a,b \in A$ such that $$|(a+A)(b+A)| \gg \frac{|A|^2}{\log |A|}.$$ In particular, it follows that $|(A+A)(A+A)| \gg \frac{|A|^2}{\log |A|}$. The latter inequality had in fact already been established in an earlier work of the author and Rudnev (arXiv:1203.6237), which built upon the recent developments of Guth and Katz (arXiv:1011.4105) in their work on the Erd\H{o}s dist...

Find SimilarView on arXiv

On the size of $k$-fold sum and product sets of integers

September 3, 2003

86% Match
Jean Bourgain, Mei-Chu Chang
Combinatorics
Number Theory

We prove the following theorem: for all positive integers $b$ there exists a positive integer $k$, such that for every finite set $A$ of integers with cardinality $|A| > 1$, we have either $$ |A + ... + A| \geq |A|^b$$ or $$ |A \cdot ... \cdot A| \geq |A|^b$$ where $A + ... + A$ and $A \cdot ... \cdot A$ are the collections of $k$-fold sums and products of elements of $A$ respectively. This is progress towards a conjecture of Erd\"os and Szemer\'edi on sum and product sets.

Find SimilarView on arXiv