January 29, 2003
Let $A$ be a subset of a finite field $F := \Z/q\Z$ for some prime $q$. If $|F|^\delta < |A| < |F|^{1-\delta}$ for some $\delta > 0$, then we prove the estimate $|A+A| + |A.A| \geq c(\delta) |A|^{1+\eps}$ for some $\eps = \eps(\delta) > 0$. This is a finite field analogue of a result of Erdos and Szemeredi. We then use this estimate to prove a Szemeredi-Trotter type theorem in finite fields, and obtain a new estimate for the Erdos distance problem in finite fields, as well as...
May 12, 2020
Let $\mathcal R$ be a finite valuation ring of order $q^r$ with $q$ a power of an odd prime number, and $\mathcal A$ be a set in $\mathcal R$. In this paper, we improve a recent result due to Yazici (2018) on a sum-product type problem. More precisely, we will prove that 1. If $|\mathcal A|\gg q^{r-\frac{1}{3}}$, then $$\max\left\lbrace |\mathcal A+\mathcal A|, |\mathcal A^2+\mathcal A^2|\right\rbrace \gg q^{\frac{r}{2}}|\mathcal A|^{\frac{1}{2}}.$$ 2. If $q^{r-\frac{3}{8}}...
November 22, 2011
In this paper we further study the relationship between convexity and additive growth, building on the work of Schoen and Shkredov (\cite{SS}) to get some improvements to earlier results of Elekes, Nathanson and Ruzsa (\cite{ENR}). In particular, we show that for any finite set $A\subset{\mathbb{R}}$ and any strictly convex or concave function $f$, \[|A+f(A)|\gg{\frac{|A|^{24/19}}{(\log|A|)^{2/19}}}\] and \[\max\{|A-A|,\ |f(A)+f(A)|\}\gg{\frac{|A|^{14/11}}{(\log|A|)^{2/11}}}....
March 19, 2015
We improve a result of Solymosi on sum-products in R, namely, we prove that max{|A+A|,|AA|}\gg |A|^{4/3+c}, where c>0 is an absolute constant. New lower bounds for sums of sets with small product set are found. Previous results are improved effectively for sets A from R with |AA| \le |A|^{4/3}.
February 20, 2009
Let $A$ and $B$ be finite subsets of $\mathbb{C}$ such that $|B|=C|A|$. We show the following variant of the sum product phenomenon: If $|AB|<\alpha|A|$ and $\alpha \ll \log |A|$, then $|kA+lB|\gg |A|^k|B|^l$. This is an application of a result of Evertse, Schlickewei, and Schmidt on linear equations with variables taking values in multiplicative groups of finite rank, in combination with an earlier theorem of Ruzsa about sumsets in $\mathbb{R}^d$. As an application of the ca...
March 28, 2023
Given $d,s \in \mathbb{N}$, a finite set $A \subseteq \mathbb{Z}$ and polynomials $\varphi_1, \dots, \varphi_{s} \in \mathbb{Z}[x]$ such that $1 \leq deg \varphi_i \leq d$ for every $1 \leq i \leq s$, we prove that \[ |A^{(s)}| + |\varphi_1(A) + \dots + \varphi_s(A) | \gg_{s,d} |A|^{\eta_s} , \] for some $\eta_s \gg_{d} \log s / \log \log s$. Moreover if $\varphi_i(0) \neq 0$ for every $1 \leq i \leq s$, then \[ |A^{(s)}| + |\varphi_1(A) \dots \varphi_s(A) | \gg_{s,d} |A|^{...
June 7, 2016
We prove that finite sets of real numbers satisfying $|AA| \leq |A|^{1+\epsilon}$ with sufficiently small $\epsilon > 0$ cannot have small additive bases nor can they be written as a set of sums $B+C$ with $|B|, |C| \geq 2$. The result can be seen as a real analog of the conjecture of S\'ark\"ozy that multiplicative subgroups of finite fields of prime order are additively irreducible.
February 24, 2014
A variation on the sum-product problem seeks to show that a set which is defined by additive and multiplicative operations will always be large. In this paper, we prove new results of this type. In particular, we show that for any finite set $A$ of positive real numbers, it is true that $$\left|\left\{\frac{a+b}{c+d}:a,b,c,d\in{A}\right\}\right|\geq{2|A|^2-1}.$$ As a consequence of this result, it is also established that $$|4^{k-1}A^{(k)}|:=|\underbrace{\underbrace{A\cdots{A...
April 3, 2023
In this paper, we prove that the bound \[ \max \{ |8A-7A|,|5f(A)-4f(A)| \} \gg |A|^{\frac{3}{2} + \frac{1}{54}-o(1)} \] holds for all $A \subset \mathbb R$, and for all convex functions $f$ which satisfy an additional technical condition. This technical condition is satisfied by the logarithmic function, and this fact can be used to deduce a sum-product estimate \[ \max \{ |16A| , |A^{(16)}| \} \gg |A|^{\frac{3}{2} + c}, \] for some $c>0$. Previously, no sum-product estimate ...
April 4, 2009
In the present paper we show that if A is a set of n real numbers, and the product set A.A has at most n^(1+c) elements, then the k-fold sumset kA has at least n^(log(k/2)/2 log 2 + 1/2 - f_k(c)) elements, where f_k(c) -> 0 as c -> 0. We believe that the methods in this paper might lead to a much stronger result; indeed, using a result of Trevor Wooley on Vinogradov's Mean Value Theorem and the Tarry-Escott Problem, we show that if |A.A| < n^(1+c), then |k(A.A)| > n^(Omega((k...