October 15, 2023
Similar papers 3
February 11, 2020
We consider the problem of learning a coefficient vector $x_{0}$ in $R^{N}$ from noisy linear observations $y=Fx_{0}+w$ in $R^{M}$ in the high dimensional limit $M,N$ to infinity with $\alpha=M/N$ fixed. We provide a rigorous derivation of an explicit formula -- first conjectured using heuristic methods from statistical physics -- for the asymptotic mean squared error obtained by penalized convex regression estimators such as the LASSO or the elastic net, for a class of very ...
November 14, 2023
We study mean-field variational inference in a Bayesian linear model when the sample size n is comparable to the dimension p. In high dimensions, the common approach of minimizing a Kullback-Leibler divergence from the posterior distribution, or maximizing an evidence lower bound, may deviate from the true posterior mean and underestimate posterior uncertainty. We study instead minimization of the TAP free energy, showing in a high-dimensional asymptotic framework that it has...
June 7, 2021
Generalised linear models for multi-class classification problems are one of the fundamental building blocks of modern machine learning tasks. In this manuscript, we characterise the learning of a mixture of $K$ Gaussians with generic means and covariances via empirical risk minimisation (ERM) with any convex loss and regularisation. In particular, we prove exact asymptotics characterising the ERM estimator in high-dimensions, extending several previous results about Gaussian...
March 3, 2019
In this paper we adopt the familiar sparse, high-dimensional linear regression model and focus on the important but often overlooked task of prediction. In particular, we consider a new empirical Bayes framework that incorporates data in the prior in two ways: one is to center the prior for the non-zero regression coefficients and the other is to provide some additional regularization. We show that, in certain settings, the asymptotic concentration of the proposed empirical B...
April 27, 2024
This paper investigates the iterates $\hbb^1,\dots,\hbb^T$ obtained from iterative algorithms in high-dimensional linear regression problems, in the regime where the feature dimension $p$ is comparable with the sample size $n$, i.e., $p \asymp n$. The analysis and proposed estimators are applicable to Gradient Descent (GD), proximal GD and their accelerated variants such as Fast Iterative Soft-Thresholding (FISTA). The paper proposes novel estimators for the generalization er...
November 4, 2020
This paper gives a review of concentration inequalities which are widely employed in non-asymptotical analyses of mathematical statistics in a wide range of settings, from distribution-free to distribution-dependent, from sub-Gaussian to sub-exponential, sub-Gamma, and sub-Weibull random variables, and from the mean to the maximum concentration. This review provides results in these settings with some fresh new results. Given the increasing popularity of high-dimensional data...
June 2, 2022
We propose a new approach to deriving quantitative mean field approximations for any probability measure $P$ on $\mathbb{R}^n$ with density proportional to $e^{f(x)}$, for $f$ strongly concave. We bound the mean field approximation for the log partition function $\log \int e^{f(x)}dx$ in terms of $\sum_{i \neq j}\mathbb{E}_{Q^*}|\partial_{ij}f|^2$, for a semi-explicit probability measure $Q^*$ characterized as the unique mean field optimizer, or equivalently as the minimizer ...
August 1, 2020
Gaussian processes are distributions over functions that are versatile and mathematically convenient priors in Bayesian modelling. However, their use is often impeded for data with large numbers of observations, $N$, due to the cubic (in $N$) cost of matrix operations used in exact inference. Many solutions have been proposed that rely on $M \ll N$ inducing variables to form an approximation at a cost of $\mathcal{O}(NM^2)$. While the computational cost appears linear in $N$,...
December 7, 2017
This paper is focused on dimension-free PAC-Bayesian bounds, under weak polynomial moment assumptions, allowing for heavy tailed sample distributions. It covers the estimation of the mean of a vector or a matrix, with applications to least squares linear regression. Special efforts are devoted to the estimation of Gram matrices, due to their prominent role in high-dimension data analysis.
November 4, 2019
We conduct non-asymptotic analysis on the mean-field variational inference for approximating posterior distributions in complex Bayesian models that may involve latent variables. We show that the mean-field approximation to the posterior can be well-approximated relative to the Kullback-Leibler divergence discrepancy measure by a normal distribution whose center is the maximum likelihood estimator (MLE). In particular, our results imply that the center of the mean-field appro...