October 15, 2023
Similar papers 4
June 22, 2021
This paper develops an approach to inference in a linear regression model when the number of potential explanatory variables is larger than the sample size. The approach treats each regression coefficient in turn as the interest parameter, the remaining coefficients being nuisance parameters, and seeks an optimal interest-respecting transformation, inducing sparsity on the relevant blocks of the notional Fisher information matrix. The induced sparsity is exploited through a m...
October 9, 2017
We propose a family of variational approximations to Bayesian posterior distributions, called $\alpha$-VB, with provable statistical guarantees. The standard variational approximation is a special case of $\alpha$-VB with $\alpha=1$. When $\alpha \in(0,1]$, a novel class of variational inequalities are developed for linking the Bayes risk under the variational approximation to the objective function in the variational optimization problem, implying that maximizing the evidenc...
July 20, 2012
We study the behavior of the posterior distribution in high-dimensional Bayesian Gaussian linear regression models having $p\gg n$, with $p$ the number of predictors and $n$ the sample size. Our focus is on obtaining quantitative finite sample bounds ensuring sufficient posterior probability assigned in neighborhoods of the true regression coefficient vector, $\beta^0$, with high probability. We assume that $\beta^0$ is approximately $S$-sparse and obtain universal bounds, wh...
November 21, 2016
In stochastic optimization, the population risk is generally approximated by the empirical risk. However, in the large-scale setting, minimization of the empirical risk may be computationally restrictive. In this paper, we design an efficient algorithm to approximate the population risk minimizer in generalized linear problems such as binary classification with surrogate losses and generalized linear regression models. We focus on large-scale problems, where the iterative min...
March 19, 2018
Every student in statistics or data science learns early on that when the sample size largely exceeds the number of variables, fitting a logistic model produces estimates that are approximately unbiased. Every student also learns that there are formulas to predict the variability of these estimates which are used for the purpose of statistical inference; for instance, to produce p-values for testing the significance of regression coefficients. Although these formulas come fro...
February 11, 2022
We study full Bayesian procedures for high-dimensional linear regression. We adopt data-dependent empirical priors introduced in [1]. In their paper, these priors have nice posterior contraction properties and are easy to compute. Our paper extend their theoretical results to the case of unknown error variance . Under proper sparsity assumption, we achieve model selection consistency, posterior contraction rates as well as Bernstein von-Mises theorem by analyzing multivariate...
February 28, 2020
Modern large-scale statistical models require to estimate thousands to millions of parameters. This is often accomplished by iterative algorithms such as gradient descent, projected gradient descent or their accelerated versions. What are the fundamental limits to these approaches? This question is well understood from an optimization viewpoint when the underlying objective is convex. Work in this area characterizes the gap to global optimality as a function of the number of ...
January 25, 2020
We study the distribution of the maximum likelihood estimate (MLE) in high-dimensional logistic models, extending the recent results from Sur (2019) to the case where the Gaussian covariates may have an arbitrary covariance structure. We prove that in the limit of large problems holding the ratio between the number $p$ of covariates and the sample size $n$ constant, every finite list of MLE coordinates follows a multivariate normal distribution. Concretely, the $j$th coordina...
February 17, 2020
We study convex empirical risk minimization for high-dimensional inference in binary models. Our first result sharply predicts the statistical performance of such estimators in the linear asymptotic regime under isotropic Gaussian features. Importantly, the predictions hold for a wide class of convex loss functions, which we exploit in order to prove a bound on the best achievable performance among them. Notably, we show that the proposed bound is tight for popular binary mod...
February 20, 2014
Simultaneously achieving parsimony and good predictive power in high dimensions is a main challenge in statistics. Non-local priors (NLPs) possess appealing properties for high-dimensional model choice, but their use for estimation has not been studied in detail. We show that, for regular models, Bayesian model averaging (BMA) estimates based on NLPs shrink spurious parameters either at fast polynomial or quasi-exponential rates as the sample size $n$ increases (depending on ...