October 15, 2023
Similar papers 5
April 30, 2013
In recent years the ultrahigh dimensional linear regression problem has attracted enormous attentions from the research community. Under the sparsity assumption most of the published work is devoted to the selection and estimation of the significant predictor variables. This paper studies a different but fundamentally important aspect of this problem: uncertainty quantification for parameter estimates and model choices. To be more specific, this paper proposes methods for der...
January 18, 2016
To model modern large-scale datasets, we need efficient algorithms to infer a set of $P$ unknown model parameters from $N$ noisy measurements. What are fundamental limits on the accuracy of parameter inference, given finite signal-to-noise ratios, limited measurements, prior information, and computational tractability requirements? How can we combine prior information with measurements to achieve these limits? Classical statistics gives incisive answers to these questions as ...
July 3, 2019
We study the problem of finding the best linear model that can minimize least-squares loss given a data-set. While this problem is trivial in the low dimensional regime, it becomes more interesting in high dimensions where the population minimizer is assumed to lie on a manifold such as sparse vectors. We propose projected gradient descent (PGD) algorithm to estimate the population minimizer in the finite sample regime. We establish linear convergence rate and data dependent ...
May 23, 2024
This paper provides theoretical insights into high-dimensional binary classification with class-conditional noisy labels. Specifically, we study the behavior of a linear classifier with a label noisiness aware loss function, when both the dimension of data $p$ and the sample size $n$ are large and comparable. Relying on random matrix theory by supposing a Gaussian mixture data model, the performance of the linear classifier when $p,n\to \infty$ is shown to converge towards a ...
September 30, 2013
It has been over 200 years since Gauss's and Legendre's famous priority dispute on who discovered the method of least squares. Nevertheless, we argue that the normal equations are still relevant in many facets of modern statistics, particularly in the domain of high-dimensional inference. Even today, we are still learning new things about the law of large numbers, first described in Bernoulli's Ars Conjectandi 300 years ago, as it applies to high dimensional inference. The ot...
March 28, 2015
We consider Bayesian variable selection in sparse high-dimensional regression, where the number of covariates $p$ may be large relative to the samples size $n$, but at most a moderate number $q$ of covariates are active. Specifically, we treat generalized linear models. For a single fixed sparse model with well-behaved prior distribution, classical theory proves that the Laplace approximation to the marginal likelihood of the model is accurate for sufficiently large sample si...
June 25, 2023
We consider the problem of heteroscedastic linear regression, where, given $n$ samples $(\mathbf{x}_i, y_i)$ from $y_i = \langle \mathbf{w}^{*}, \mathbf{x}_i \rangle + \epsilon_i \cdot \langle \mathbf{f}^{*}, \mathbf{x}_i \rangle$ with $\mathbf{x}_i \sim N(0,\mathbf{I})$, $\epsilon_i \sim N(0,1)$, we aim to estimate $\mathbf{w}^{*}$. Beyond classical applications of such models in statistics, econometrics, time series analysis etc., it is also particularly relevant in machine...
March 2, 2019
Variational Bayes (VB) is a recent approximate method for Bayesian inference. It has the merit of being a fast and scalable alternative to Markov Chain Monte Carlo (MCMC) but its approximation error is often unknown. In this paper, we derive the approximation error of VB in terms of mean, mode, variance, predictive density and KL divergence for the linear Gaussian multi-equation regression. Our results indicate that VB approximates the posterior mean perfectly. Factors affect...
April 10, 2018
For optimization on large-scale data, exactly calculating its solution may be computationally difficulty because of the large size of the data. In this paper we consider subsampled optimization for fast approximating the exact solution. In this approach, one gets a surrogate dataset by sampling from the full data, and then obtains an approximate solution by solving the subsampled optimization based on the surrogate. One main theoretical contributions are to provide the asympt...
May 25, 2023
In high-dimensional Bayesian statistics, several methods have been developed, including many prior distributions that lead to the sparsity of estimated parameters. However, such priors have limitations in handling the spectral eigenvector structure of data, and as a result, they are ill-suited for analyzing over-parameterized models (high-dimensional linear models that do not assume sparsity) that have been developed in recent years. This paper introduces a Bayesian approach ...