December 13, 2023
Similar papers 3
July 10, 2024
An important problem in signal processing and deep learning is to achieve \textit{invariance} to nuisance factors not relevant for the task. Since many of these factors are describable as the action of a group $G$ (e.g. rotations, translations, scalings), we want methods to be $G$-invariant. The $G$-Bispectrum extracts every characteristic of a given signal up to group action: for example, the shape of an object in an image, but not its orientation. Consequently, the $G$-Bisp...
July 25, 2023
We introduce a machine-learning approach (denoted Symmetry Seeker Neural Network) capable of automatically discovering discrete symmetry groups in physical systems. This method identifies the finite set of parameter transformations that preserve the system's physical properties. Remarkably, the method accomplishes this without prior knowledge of the system's symmetry or the mathematical relationships between parameters and properties. Demonstrating its versatility, we showcas...
October 17, 2022
We prove an impossibility result, which in the context of function learning says the following: under certain conditions, it is impossible to simultaneously learn symmetries and functions equivariant under them using an ansatz consisting of equivariant functions. To formalize this statement, we carefully study notions of approximation for groups and semigroups. We analyze certain families of neural networks for whether they satisfy the conditions of the impossibility result: ...
June 17, 2022
Characterizing the remarkable generalization properties of over-parameterized neural networks remains an open problem. In this paper, we promote a shift of focus towards initialization rather than neural architecture or (stochastic) gradient descent to explain this implicit regularization. Through a Fourier lens, we derive a general result for the spectral bias of neural networks and show that the generalization of neural networks is heavily tied to their initialization. Furt...
May 18, 2022
When trying to fit a deep neural network (DNN) to a $G$-invariant target function with $G$ a group, it only makes sense to constrain the DNN to be $G$-invariant as well. However, there can be many different ways to do this, thus raising the problem of ``$G$-invariant neural architecture design'': What is the optimal $G$-invariant architecture for a given problem? Before we can consider the optimization problem itself, we must understand the search space, the architectures in ...
February 25, 2024
To investigate neural network parameters, it is easier to study the distribution of parameters than to study the parameters in each neuron. The ridgelet transform is a pseudo-inverse operator that maps a given function $f$ to the parameter distribution $\gamma$ so that a network $\mathtt{NN}[\gamma]$ reproduces $f$, i.e. $\mathtt{NN}[\gamma]=f$. For depth-2 fully-connected networks on a Euclidean space, the ridgelet transform has been discovered up to the closed-form expressi...
October 14, 2022
Recent advances in classical machine learning have shown that creating models with inductive biases encoding the symmetries of a problem can greatly improve performance. Importation of these ideas, combined with an existing rich body of work at the nexus of quantum theory and symmetry, has given rise to the field of Geometric Quantum Machine Learning (GQML). Following the success of its classical counterpart, it is reasonable to expect that GQML will play a crucial role in de...
June 22, 2018
Neural networks are known to be a class of highly expressive functions able to fit even random input-output mappings with $100\%$ accuracy. In this work, we present properties of neural networks that complement this aspect of expressivity. By using tools from Fourier analysis, we show that deep ReLU networks are biased towards low frequency functions, meaning that they cannot have local fluctuations without affecting their global behavior. Intuitively, this property is in lin...
January 3, 2024
We study the problem of learning equivariant neural networks via gradient descent. The incorporation of known symmetries ("equivariance") into neural nets has empirically improved the performance of learning pipelines, in domains ranging from biology to computer vision. However, a rich yet separate line of learning theoretic research has demonstrated that actually learning shallow, fully-connected (i.e. non-symmetric) networks has exponential complexity in the correlational s...
February 11, 2018
Convolutional neural networks have been extremely successful in the image recognition domain because they ensure equivariance to translations. There have been many recent attempts to generalize this framework to other domains, including graphs and data lying on manifolds. In this paper we give a rigorous, theoretical treatment of convolution and equivariance in neural networks with respect to not just translations, but the action of any compact group. Our main result is to pr...