December 13, 2023
Similar papers 4
October 8, 2020
We introduce an algorithm for designing Neural Group Actions, collections of deep neural network architectures which model symmetric transformations satisfying the laws of a given finite group. This generalizes involutive neural networks $\mathcal{N}$, which satisfy $\mathcal{N}(\mathcal{N}(x))=x$ for any data $x$, the group law of $\mathbb{Z}_2$. We show how to optionally enforce an additional constraint that the group action be volume-preserving. We conjecture, by analogy t...
April 8, 2015
Why does Deep Learning work? What representations does it capture? How do higher-order representations emerge? We study these questions from the perspective of group theory, thereby opening a new approach towards a theory of Deep learning. One factor behind the recent resurgence of the subject is a key algorithmic step called {\em pretraining}: first search for a good generative model for the input samples, and repeat the process one layer at a time. We show deeper implicat...
May 27, 2022
Symmetry is a fundamental tool in the exploration of a broad range of complex systems. In machine learning symmetry has been explored in both models and data. In this paper we seek to connect the symmetries arising from the architecture of a family of models with the symmetries of that family's internal representation of data. We do this by calculating a set of fundamental symmetry groups, which we call the intertwiner groups of the model. We connect intertwiner groups to a m...
March 6, 2024
These are the lecture notes that accompanied the course of the same name that I taught at the Eindhoven University of Technology from 2021 to 2023. The course is intended as an introduction to neural networks for mathematics students at the graduate level and aims to make mathematics students interested in further researching neural networks. It consists of two parts: first a general introduction to deep learning that focuses on introducing the field in a formal mathematical ...
June 7, 2021
In certain situations, neural networks are trained upon data that obey underlying symmetries. However, the predictions do not respect the symmetries exactly unless embedded in the network structure. In this work, we introduce architectures that embed a special kind of symmetry namely, invariance with respect to involutory linear/affine transformations up to parity $p=\pm 1$. We provide rigorous theorems to show that the proposed network ensures such an invariance and present ...
January 27, 2019
Constraining linear layers in neural networks to respect symmetry transformations from a group $G$ is a common design principle for invariant networks that has found many applications in machine learning. In this paper, we consider a fundamental question that has received little attention to date: Can these networks approximate any (continuous) invariant function? We tackle the rather general case where $G\leq S_n$ (an arbitrary subgroup of the symmetric group) that acts ...
September 14, 2021
Invariance under symmetry is an important problem in machine learning. Our paper looks specifically at equivariant neural networks where transformations of inputs yield homomorphic transformations of outputs. Here, steerable CNNs have emerged as the standard solution. An inherent problem of steerable representations is that general nonlinear layers break equivariance, thus restricting architectural choices. Our paper applies harmonic distortion analysis to illuminate the effe...
January 23, 2023
This is a master's thesis concerning the theoretical ideas of geometric deep learning. Geometric deep learning aims to provide a structured characterization of neural network architectures, specifically focused on the ideas of invariance and equivariance of data with respect to given transformations. This thesis aims to provide a theoretical evaluation of geometric deep learning, compiling theoretical results that characterize the properties of invariant neural networks wit...
December 2, 2019
The lack of interpretability and trust is a much-criticised feature of deep neural networks. In fully connected nets, the signalling between inner layers is scrambled because backpropagation training does not require perceptrons to be arranged in any particular order. The result is a black box; this problem is particularly severe in scientific computing and digital signal processing (DSP), where neutral nets perform abstract mathematical transformations that do not reduce to ...
February 1, 2022
Exploiting data invariances is crucial for efficient learning in both artificial and biological neural circuits. Understanding how neural networks can discover appropriate representations capable of harnessing the underlying symmetries of their inputs is thus crucial in machine learning and neuroscience. Convolutional neural networks, for example, were designed to exploit translation symmetry and their capabilities triggered the first wave of deep learning successes. However,...