September 3, 2024
Similar papers 4
February 13, 2012
We complete a program of study of SU(N) gauge theories coupled to two flavors of fermions in the two-index symmetric representation by performing numerical simulations in SU(4). The beta function, defined and calculated via the Schr\"odinger functional, runs more slowly than the two-loop perturbative result. The mass anomalous dimension levels off in strong coupling at a value of about 0.45, rendering this theory unsuitable for walking technicolor. A large-N comparison of thi...
November 12, 2016
We consider a field theoretical model where a SU(2) fermion doublet, subjected to non-Abelian gauge interactions, is also coupled to a complex scalar field doublet via a Yukawa and an irrelevant Wilson-like term. Despite the presence of these two chiral breaking operators in the Lagrangian, an exact symmetry acting on fermions and scalars prevents perturbative mass corrections. In the phase where fermions are massless (Wigner phase) the Yukawa coupling can be tuned to a criti...
February 26, 2018
We investigate the phase structure of SU(4) gauge theory with the gauge field simultaneously coupled to two flavors of fermion in the fundamental representation and two flavors of fermion in the two-index antisymmetric representation. We find that the theory has only two phases, a low-temperature phase with both species of fermion confined and chirally broken, and a high-temperature phase with both species of fermion deconfined and chirally restored. The single phase transiti...
November 9, 2011
We study the phase structure of SU(3) lattice gauge theory with Nf=12 staggered fermions in the fundamental representation, for both zero and finite temperature at strong gauge couplings. For small fermion masses we find two transitions at finite temperature that converge to two well-separated bulk phase transitions. The phase between the two transitions appears to be a novel phase. We identify order parameters showing that the single-site shift symmetry of staggered fermions...
February 15, 2002
We study the finite temperature phase transition of four and two flavor staggered fermions with hypercubic smeared link actions. These preliminary studies suggest that the improved flavor symmetry of the fermionic action can have a significant effect on the finite temperature phase diagram.
June 25, 2018
We study four-dimensional adjoint QCD with gauge group SU(2) and two Weyl fermion flavors, which has an $SU(2)_R$ chiral symmetry. The infrared behavior of this theory is not firmly established. We explore candidate infrared phases by embedding adjoint QCD into $\mathcal{N}=2$ supersymmetric Yang-Mills theory deformed by a supersymmetry-breaking scalar mass M that preserves all global symmetries and 't Hooft anomalies. This includes 't Hooft anomalies that are only visible wh...
July 4, 2008
We report on numerical simulations of SU(2) lattice gauge theory with two flavors of light dynamical quarks in the adjoint of the gauge group. The dynamics of this theory is thought to be very different from QCD -- the theory exhibiting conformal or near conformal behavior in the infrared. We make a high resolution survey of the phase diagram of this model in the plane of the bare coupling and quark mass on lattices of size 8^3 \times 16. Our simulations reveal a line of firs...
June 25, 2012
We discuss finite temperature phase diagrams of SU(N) gauge theory with massless fermions as a function of the number of fermion flavors. Inside the conformal window we find a phase boundary separating two different conformal phases. Below the conformal window we find different phase structures depending on if the beta function of the theory has a first or higher order zero at the lower boundary of the conformal window. We also outline how the associated behaviors will help i...
December 8, 2008
We have performed numerical simulations of SU(3) gauge theory coupled to Nf=2 flavors of symmetric representation fermions. The fermions are discretized with the tadpole-improved clover action. Our simulations are done on lattices of length L=6, 8, and 12. In all simulation volumes we observe a crossover from a strongly coupled confined phase to a weak coupling deconfined phase. Degeneracies in screening masses, plus the behavior of the pseudoscalar decay constant, indicate t...
August 24, 2021
We present a numerical study of the spectrum of an asymptotically non-free $SU(2)$ gauge theory with $N_f=24$ massive fermion flavors. For such large number of flavors, asymptotic freedom is lost and the massless theory is governed by a gaussian fixed point at long distances. If fermions are massive they decouple at low energy scales and the theory is confining. We present a scaling law for the masses of the hadrons, glueballs and string tension as functions of fermion mass. ...