November 19, 2024
Similar papers 4
June 30, 2004
The Standard Model of cosmology of the 1980's was based on a remarkable interplay of ideas from particle theory, experiment and astrophysical observations. That model is now dead, and has been replaced by something far more bizarre. Interestingly, the aspect that has survived involves perhaps the most exotic component: dark matter that dominates the gravitational dynamics of all galaxies, and appears to be composed of a sea of new weakly interacting elementary particles. But ...
November 4, 2011
It is appealing to stabilize dark matter by the same discrete symmetry that is used to explain the structure of quark and lepton mass matrices. However, to generate the observed fermion mixing patterns, any flavor symmetry must necessarily be broken, rendering dark matter unstable. We study singlet, doublet and triplet SU(2) multiplets of both scalar and fermion dark matter candidates and enumerate the conditions under which no d < 6 dark matter decay operators are generated ...
July 9, 2013
The spin-charge-family theory, proposed by the author as a possible new way to explain the assumptions of the standard model, predicts at the low energy regime two decoupled groups of four families of quarks and leptons. In two successive breaks the massless families, first the group of four and at the second break the rest four families, gain nonzero mass matrices. The families are identical with respect to the charges and spin. There are two kinds of fields in this theory, ...
December 15, 2021
Motivated by the observed ratio of dark matter to baryon mass densities, $\rho_D/\rho_B \simeq 5$, we propose a theory of dark-color unification. In this theory, the dark to visible baryon masses are fixed by the ratio of dark to visible confinement scales, which are determined to be nearby in mass through the unification of the dark and visible gauge theories at a high scale. Together with a mechanism for darko-baryo-genesis, which arises naturally from the grand unification...
May 23, 2017
The dark sector of the Universe is beginning to be clarified step by step. If the dark energy is vacuum energy, then 123 orders are exactly reduced by ordinary physical processes. For many years these unexplained orders were called a crisis in physics. There was indeed a "crisis" before the introduction of the holographic principle and entropic force in physics. The vacuum energy was spent for the organization of new microstates during the entire life of the Universe, but in ...
May 4, 2010
We investigate the dark matter and the cosmological baryon asymmetry in a simple theory where baryon (B) and lepton (L) number are local gauge symmetries that are spontaneously broken. In this model, the cold dark matter candidate is the lightest new field with baryon number and its stability is an automatic consequence of the gauge symmetry. Dark matter annihilation is either through a leptophobic gauge boson whose mass must be below a TeV or through the Higgs boson. Since t...
August 15, 2008
We all know that in our family of particle physics we have three generations but still don't know why - the so-called "family problem". On other hand, in view of the masses and oscillations, the neutrinos now present some basic difficulty in the Standard Model. In this note, I propose that on top of the SU_c(3) \times SU(2) \times U(1) standard model there is an SU_f (3) extension - a simple SU_c(3) \times SU(2) \times U(1) \times SU_f (3) extended standard model. The family ...
May 14, 2015
We investigate the phenomenology of flavored dark matter (DM). DM stability is guaranteed by an accidental ${\mathcal Z}_3$ symmetry, a subgroup of the standard model (SM) flavor group that is not broken by the SM Yukawa interactions. We consider an explicit realization where the quark part of the SM flavor group is fully gauged. If the dominant interactions between DM and visible sector are through flavor gauge bosons, as we show for Dirac fermion flavored DM, then the DM ma...
February 28, 2025
Standard Model (SM) with 15 Weyl fermions per family (lacking the 16th, the sterile right-handed neutrino $\nu_R$) suffers from mixed gauge-gravitational anomalies tied to baryon number plus or minus lepton number ${\bf B} \pm {\bf L}$ symmetry. Including $\nu_R$ per family can cancel these anomalies, but when ${\bf B} \pm {\bf L}$ symmetry is preserved as discrete finite subgroups rather than a continuous U(1), the perturbative local anomalies become nonperturbative global a...
April 30, 2016
In this talk, I describe a class of electroweak (EW) scale dark matter (DM) models where its stability or longevity are the results of underlying dark gauge symmetries: stable due to unbroken local dark gauge symmetry or topology, or long-lived due to the accidental global symmetry of dark gauge theories. Compared with the usual phenomenological dark matter models (including DM EFT or simplified DM models), DM models with local dark gauge symmetries include dark gauge bosons,...