December 9, 2016
Exponential random graph models, or ERGMs, are a flexible and general class of models for modeling dependent data. While the early literature has shown them to be powerful in capturing many network features of interest, recent work highlights difficulties related to the models' ill behavior, such as most of the probability mass being concentrated on a very small subset of the parameter space. This behavior limits both the applicability of an ERGM as a model for real data and ...
March 23, 2011
Across the sciences, the statistical analysis of networks is central to the production of knowledge on relational phenomena. Because of their ability to model the structural generation of networks, exponential random graph models are a ubiquitous means of analysis. However, they are limited by an inability to model networks with valued edges. We solve this problem by introducing a class of generalized exponential random graph models capable of modeling networks whose edges ar...
April 4, 2019
The methods of non-homogeneous random graphs calibration are developed for social networks simulation. The graphs are calibrated by the degree distributions of the vertices and the edges. The mathematical foundation of the methods is formed by the theory of random graphs with the nonlinear preferential attachment rule and the theory of Erdos-Renyi random graphs. In fact, well-calibrated network graph models and computer experiments with these models would help developers (own...
October 17, 2008
We address the question of understanding the effect of the underlying network topology on the spread of a virus and the dissemination of information when users are mobile performing independent random walks on a graph. To this end we propose a simple model of infection that enables to study the coincidence time of two random walkers on an arbitrary graph. By studying the coincidence time of a susceptible and an infected individual both moving in the graph we obtain estimates ...
May 15, 2007
Random networks with specified degree distributions have been proposed as realistic models of population structure, yet the problem of dynamically modeling SIR-type epidemics in random networks remains complex. I resolve this dilemma by showing how the SIR dynamics can be modeled with a system of three nonlinear ODE's. The method makes use of the probability generating function (PGF) formalism for representing the degree distribution of a random network and makes use of netwo...
October 17, 2024
Models of random phylogenetic networks have been used since the inception of the field, but the introduction and rigorous study of mathematically tractable models is a much more recent topic that has gained momentum in the last 5 years. This manuscript discusses some recent developments in the field through a selection of examples. The emphasis is on the techniques rather than on the results themselves, and on probabilistic tools rather than on combinatorial ones.
November 25, 2013
Probabilistic networks display a wide range of high average clustering coefficients independent of the number of nodes in the network. In particular, the local clustering coefficient decreases with the degree of the subtending node in a complicated manner not explained by any current models. While a number of hypotheses have been proposed to explain some of these observed properties, there are no solvable models that explain them all. We propose a novel growth model for both ...
July 24, 2007
We introduce and study a class of exchangeable random graph ensembles. They can be used as statistical null models for empirical networks, and as a tool for theoretical investigations. We provide general theorems that carachterize the degree distribution of the ensemble graphs, together with some features that are important for applications, such as subgraph distributions and kernel of the adjacency matrix. These results are used to compare to other models of simple and compl...
December 31, 2011
Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our systematic framework and the fact that its assumptions are explicitly stated suggests that it could be used as a ...
August 9, 2020
The degree distributions of complex networks are usually considered to be power law. However, it is not the case for a large number of them. We thus propose a new model able to build random growing networks with (almost) any wanted degree distribution. The degree distribution can either be theoretical or extracted from a real-world network. The main idea is to invert the recurrence equation commonly used to compute the degree distribution in order to find a convenient attachm...