December 12, 2002
Similar papers 2
January 4, 2009
We investigate analytically and numerically the dynamical properties of critical Boolean networks with power-law in-degree distributions. When the exponent of the in-degree distribution is larger than 3, we obtain results equivalent to those obtained for networks with fixed in-degree, e.g., the number of the non-frozen nodes scales as $N^{2/3}$ with the system size $N$. When the exponent of the distribution is between 2 and 3, the number of the non-frozen nodes increases as $...
June 20, 2006
Random Boolean networks were introduced in 1969 by Kauffman as a model for gene regulation. By combining analytical arguments and efficient numerical simulations, we evaluate the properties of relevant components of critical random Boolean networks independently of update scheme. As known from previous work, the number of relevant components grows logarithmically with network size. We find that in most networks all relevant nodes with more than one relevant input sit in the s...
February 1, 2019
Genetic regulatory networks control ontogeny. For fifty years Boolean networks have served as models of such systems, ranging from ensembles of random Boolean networks as models for generic properties of gene regulation to working dynamical models of a growing number of sub-networks of real cells. At the same time, their statistical mechanics has been thoroughly studied. Here we recapitulate their original motivation in the context of current theoretical and empirical researc...
January 5, 2005
We show that the mean number of attractors in a critical Boolean network under asynchronous stochastic update grows like a power law and that the mean size of the attractors increases as a stretched exponential with the system size. This is in strong contrast to the synchronous case, where the number of attractors grows faster than any power law.
May 3, 2018
The complex dynamics of gene expression in living cells can be well-approximated using Boolean networks. The average sensitivity is a natural measure of stability in these systems: values below one indicate typically stable dynamics associated with an ordered phase, whereas values above one indicate chaotic dynamics. This yields a theoretically motivated adaptive advantage to being near the critical value of one, at the boundary between order and chaos. Here, we measure avera...
November 4, 2004
Boolean networks at the critical point have been a matter of debate for many years as, e.g., scaling of number of attractor with system size. Recently it was found that this number scales superpolynomially with system size, contrary to a common earlier expectation of sublinear scaling. We here point to the fact that these results are obtained using deterministic parallel update, where a large fraction of attractors in fact are an artifact of the updating scheme. This limits t...
November 2, 2005
We study critical random Boolean networks with two inputs per node that contain only canalyzing functions. We present a phenomenological theory that explains how a frozen core of nodes that are frozen on all attractors arises. This theory leads to an intuitive understanding of the system's dynamics as it demonstrates the analogy between standard random Boolean networks and networks with canalyzing functions only. It reproduces correctly the scaling of the number of nonfrozen ...
November 6, 2008
It has been proposed that adaptation in complex systems is optimized at the critical boundary between ordered and disordered dynamical regimes. Here, we review models of evolving dynamical networks that lead to self-organization of network topology based on a local coupling between a dynamical order parameter and rewiring of network connectivity, with convergence towards criticality in the limit of large network size $N$. In particular, two adaptive schemes are discussed and ...
April 27, 2017
We propose new activity-dependent adaptive Boolean networks inspired by the cis-regulatory mechanism in gene regulatory networks. We analytically show that our model can be solved for stationary in-degree distribution for a wide class of update rules by employing the annealed approximation of Boolean network dynamics and that evolved Boolean networks have a preassigned average sensitivity that can be set independently of update rules if certain conditions are satisfied. In pa...
March 14, 2014
Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions th...