December 12, 2002
Similar papers 3
March 10, 2010
We introduce a numerical method to study random Boolean networks with asynchronous stochas- tic update. Each node in the network of states starts with equal occupation probability and this probability distribution then evolves to a steady state. Nodes left with finite occupation probability determine the attractors and the sizes of their basins. As for synchronous update, the basin entropy grows with system size only for critical networks, where the distribution of attractor ...
February 5, 2007
The information processing capacity of a complex dynamical system is reflected in the partitioning of its state space into disjoint basins of attraction, with state trajectories in each basin flowing towards their corresponding attractor. We introduce a novel network parameter, the basin entropy, as a measure of the complexity of information that such a system is capable of storing. By studying ensembles of random Boolean networks, we find that the basin entropy scales with s...
September 5, 2022
Stability is an important characteristic of network models that has implications for other desirable aspects such as controllability. The stability of a Boolean network depends on various factors, such as the topology of its wiring diagram and the type of the functions describing its dynamics. In this paper, we study the stability of linear Boolean networks by computing Derrida curves and quantifying the number of attractors and cycle lengths imposed by their network topologi...
May 31, 2010
Random Boolean networks (RBNs) are models of genetic regulatory networks. It is useful to describe RBNs as self-organizing systems to study how changes in the nodes and connections affect the global network dynamics. This article reviews eight different methods for guiding the self-organization of RBNs. In particular, the article is focussed on guiding RBNs towards the critical dynamical regime, which is near the phase transition between the ordered and dynamical phases. The ...
November 5, 2003
In this paper we study the phase transitions of different types of Random Boolean networks. These differ in their updating scheme: synchronous, semi-synchronous, or asynchronous, and deterministic or non-deterministic. It has been shown that the statistical properties of Random Boolean networks change considerable according to the updating scheme. We study with computer simulations sensitivity to initial conditions as a measure of order/chaos. We find that independently of th...
January 7, 2002
Random Threshold Networks with sparse, asymmetric connections show complex dynamical behavior similar to Random Boolean Networks, with a transition from ordered to chaotic dynamics at a critical average connectivity $K_c$. In this type of model - contrary to Boolean Networks - propagation of local perturbations (damage) depends on the in-degree of the sites. $K_c$ is determined analytically, using an annealed approximation, and the results are confirmed by numerical simulatio...
August 12, 2017
Gene regulatory network (GRN)-based morphogenetic models have recently gained an increasing attention. However, the relationship between microscopic properties of intracellular GRNs and macroscopic properties of morphogenetic systems has not been fully understood yet. Here we propose a theoretical morphogenetic model representing an aggregation of cells, and reveal the relationship between criticality of GRNs and morphogenetic pattern formation. In our model, the positions of...
January 29, 2013
We evaluate analytically and numerically the size of the frozen core and various scaling laws for critical Boolean networks that have a power-law in- and/or out-degree distribution. To this purpose, we generalize an efficient method that has previously been used for conventional random Boolean networks and for networks with power-law in-degree distributions. With this generalization, we can also deal with power-law out-degree distributions. When the power-law exponent is betw...
March 13, 2000
We evolve network topology of an asymmetrically connected threshold network by a simple local rewiring rule: quiet nodes grow links, active nodes lose links. This leads to convergence of the average connectivity of the network towards the critical value $K_c =2$ in the limit of large system size $N$. How this principle could generate self-organization in natural complex systems is discussed for two examples: neural networks and regulatory networks in the genome.
July 23, 1999
The critical boundaries separating ordered from chaotic behavior in randomly wired S-state networks are calculated. These networks are a natural generalization of random Boolean nets and are proposed as on extended approach to genetic regulatory systems, sets of cells in different states or collectives of agents engaged into a set of S possible tasks. A order parameter for the transition is computed and analysed. The relevance of these networks to biology, their relationships...