January 5, 2005
Similar papers 4
January 31, 2019
Boolean networks are a popular modeling framework in computational biology to capture the dynamics of molecular networks, such as gene regulatory networks. It has been observed that many published models of such networks are defined by regulatory rules driving the dynamics that have certain so-called canalizing properties. In this paper, we investigate the dynamics of a random Boolean network with such properties using analytical methods and simulations. From our simulation...
October 5, 2000
We analyze the synchronization transition for a pair of coupled identical Kauffman networks in the chaotic phase. The annealed model for Kauffman networks shows that synchronization appears through a transcritical bifurcation, and provides an approximate description for the whole dynamics of the coupled networks. We show that these analytical predictions are in good agreement with numerical results for sufficiently large networks, and study finite-size effects in detail. Prel...
November 2, 2005
We study critical random Boolean networks with two inputs per node that contain only canalyzing functions. We present a phenomenological theory that explains how a frozen core of nodes that are frozen on all attractors arises. This theory leads to an intuitive understanding of the system's dynamics as it demonstrates the analogy between standard random Boolean networks and networks with canalyzing functions only. It reproduces correctly the scaling of the number of nonfrozen ...
November 5, 2003
In this paper we study the phase transitions of different types of Random Boolean networks. These differ in their updating scheme: synchronous, semi-synchronous, or asynchronous, and deterministic or non-deterministic. It has been shown that the statistical properties of Random Boolean networks change considerable according to the updating scheme. We study with computer simulations sensitivity to initial conditions as a measure of order/chaos. We find that independently of th...
July 6, 2010
We consider a model recently proposed by Chatterjee and Durrett [CD2011] as an "annealed approximation" of boolean networks, which are a class of cellular automata on a random graph, as defined by S. Kauffman [K69]. The starting point is a random directed graph on $n$ vertices; each vertex has $r$ input vertices pointing to it. For the model of [CD2011], a discrete time threshold contact process is then considered on this graph: at each instant, each vertex has probability $q...
October 19, 2001
A model of cellular metabolism due to S. Kauffman is analyzed. It consists of a network of Boolean gates randomly assembled according to a probability distribution. It is shown that the behavior of the network depends very critically on certain simple algebraic parameters of the distribution. In some cases, the analytic results support conclusions based on simulations of random Boolean networks, but in other cases, they do not.
January 7, 2002
Random Threshold Networks with sparse, asymmetric connections show complex dynamical behavior similar to Random Boolean Networks, with a transition from ordered to chaotic dynamics at a critical average connectivity $K_c$. In this type of model - contrary to Boolean Networks - propagation of local perturbations (damage) depends on the in-degree of the sites. $K_c$ is determined analytically, using an annealed approximation, and the results are confirmed by numerical simulatio...
July 2, 2001
Random Boolean networks, the Kauffman model, are revisited by means of a novel decimation algorithm, which reduces the networks to their dynamical cores. The average size of the removed part, the stable core, grows approximately linearly with N, the number of nodes in the original networks. We show that this can be understood as the percolation of the stability signal in the network. The stability of the dynamical core is investigated and it is shown that this core lacks the ...
October 21, 2004
We study two types of simple Boolean networks, namely two loops with a cross-link and one loop with an additional internal link. Such networks occur as relevant components of critical K=2 Kauffman networks. We determine mostly analytically the numbers and lengths of cycles of these networks and find many of the features that have been observed in Kauffman networks. In particular, the mean number and length of cycles can diverge faster than any power law.
April 24, 2009
We clarify the effect different sampling methods and weighting schemes have on the statistics of attractors in ensembles of random Boolean networks (RBNs). We directly measure cycle lengths of attractors and sizes of basins of attraction in RBNs using exact enumeration of the state space. In general, the distribution of attractor lengths differs markedly from that obtained by randomly choosing an initial state and following the dynamics to reach an attractor. Our results indi...