September 6, 2006
Similar papers 2
December 8, 2009
The layered perovskite Ca2RuO4 is a spin-one Mott insulator at ambient pressure and exhibits metallic ferromagnetism at least up to ~ 80 kbar with a maximum Curie temperature of 28 K. Above ~ 90 kbar and up to 140 kbar, the highest pressure reached, the resistivity and ac susceptibility show pronounced downturns below ~ 0.4 K in applied magnetic fields of up to ~10 mT. This indicates that our specimens of Ca2RuO4 are weakly superconducting on the border of a quasi-2D ferromag...
March 2, 2004
We report a uniaxial pressure-dependence of magnetism in layered perovskite strontium ruthenate Sr3Ru2O7. By applying a relatively small uniaxial pressure, greater than 0.1 GPa normal to the RuO2 layer, ferromagnetic ordering manifests below 80 K from the enhanced-paramagnet. Magnetization at 1 kOe and 2 K becomes 100 times larger than that under ambient condition. Uniaxial pressure dependence of Curie temperature T_C suggests the first order magnetic transition. Origin of th...
June 22, 2018
Sr4Ru3O10 is a Ruddlesden-Popper compound with triple Ru-O perovskite layers separated by Sr-O alkali layers. This compound presents a rare coexistence of interlayer (c-axis) ferromagnetism and intralayer (basal-plane) metamagnetism at ambient pressure. Here we report the observation of pressure-induced, intralayer itinerant antiferromagnetism arising from the interlayer ferromagnetism. The application of modest hydrostatic pressure generates an anisotropy that causes a flatt...
March 8, 2002
We show that the pressure-temperature phase diagram of the Mott insulator Ca$_{2}$RuO$_{4}$ features a metal-insulator transition at 0.5GPa: at 300K from paramagnetic insulator to paramagnetic quasi-two-dimensional metal; at $T \leq$ 12K from antiferromagnetic insulator to ferromagnetic, highly anisotropic, three-dimensional metal. % We compare the metallic state to that of the structurally related p-wave superconductor Sr$_{2}$RuO$_{4}$, and discuss the importance of structu...
September 29, 2007
We studied single-crystalline Pr0.5Sr0.5MnO3 by means of measurements of magnetic susceptibility and specific heat at ambient pressure (P), and electrical resistivity (r) in hydrostatic pressures up to 2 GPa. This material displays ferromagnetic (FM) order, with Curie temperature TC ~ 255 K. A crystallographic transformation from I4/mcm to Fmmm is accompanied by the onset of antiferromagnetism (AFM), with Neel temperature TN ~ 161 K. The effect of pressure is to lower TC, and...
October 14, 2004
The review is devoted to a discussion of the effects of high pressure imposed on superconducting materials. Low-temperature superconductors, high-temperature superconducting cuprates, and some unconventional superconducting compounds are investigated. Experimental as well as theoretical results regarding the pressure effects on Tc and other interesting properties are summarized.
November 12, 2002
We performed resistivity measurements in CuRh$_{2}$S$_{4}$ under quasi-hydrostatic pressure of up to 8.0 GPa, and found a pressure induced superconductor-insulator (SI) transition. Initially, with increasing pressure, the superconducting transition temperature $T_c$ increases from 4.7 K at ambient pressure to 6.4 K at 4.0 GPa, but decreases at higher pressures. With further compression, superconductivity in CuRh$_{2}$S$_{4}$ disappears abruptly at a critical pressure $P_{\rm ...
May 14, 2015
We report the results of our investigation of SrPt3P, a recently discovered strong-coupling superconductor with Tc = 8.4 K, by application of high physical pressure and by chemical doping. We study hole-doped SrPt3P, which was theoretically predicted to have a higher Tc, resistively, magnetically, and calorimetrically. Here we present the results of these studies and discuss their implications.
August 18, 2015
We study the structural evolution of Sr$_3$Ir$_2$O$_7$ as a function of pressure using x-ray diffraction. At a pressure of 54 GPa at room temperature, we observe a first-order structural phase transition, associated with a change from tetragonal to monoclinic symmetry, and accompanied by a 4% volume collapse. Rietveld refinement of the high-pressure phase reveals a novel modification of the Ruddlesden-Popper structure, which adopts an altered stacking sequence of the perovski...
October 27, 2008
We report resistivity measurement under pressure in single crystals of SrFe_2As_2, which is one of the parent materials of Fe-based superconductors. The structural and antiferromagnetic (AFM) transition of T_0 = 198 K at ambient pressure is suppressed under pressure, and the ordered phase disappears above P_c ~ 3.6-3.7 GPa. Superconductivity with a sharp transition appears accompanied by the suppression of the AFM state. T_c exhibits a maximum of 34.1 K, which is realized clo...