November 15, 2006
Similar papers 5
May 11, 2016
We report on the observation of the quantum Hall effect at high temperatures in HgTe quantum wells with a finite band gap and a thickness below and above the critical thickness $d_\textnormal{c}$ that separates a conventional semiconductor from a two-dimensional topological insulator. At high carrier concentrations we observe a quantized Hall conductivity up to 60\,K with energy gaps between Landau Levels of the order of 25\,meV, in good agreement with the Landau Level spectr...
June 30, 2008
The solutions for the helical edge states for an effective continuum model for the quantum spin Hall effect in HgTe/CdTe quantum wells are presented. For a sample of a large size, the solution gives the linear dispersion for the edge states. However, in a finite strip geometry, the edge states at two sides will couple with each other, which leads to a finite energy gap in the spectra. The gap decays in an exponential law of the width of sample. The magnetic field dependence o...
November 30, 2021
Topological insulators represent a new quantum state of matter which is characterized by edge or surface states and an insulating band gap in the bulk. In a two dimensional (2D) system based on the HgTe quantum well (QW) of critical width random deviations of the well width from its average value result in local crossovers from zero gap 2D Dirac fermion system to either the 2D topological insulator or the ordinary insulator, forming a complicated in-plane network of helical c...
October 20, 2010
We investigate theoretically the electron states in HgTe quantum dots (QDs) with inverted band structures. In sharp contrast to conventional semiconductor quantum dots, the quantum states in the gap of HgTe quantum dot with an inverted band structure are fully spin-polarized, and show ring-like density distributions near the boundary of the QD and spin-angular momentum locking. The persistent charge currents and magnetic moments, i.e., the Aharonov-Bohm effect, can be observe...
February 20, 2010
Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator, but have protected conducting states on their edge or surface. The 2D topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hall state. A 3D topological insulator supports novel spin polarized 2D Dirac fermions on its surface. In this Colloquium article we will review the theoretical foundation for these electronic states and d...
March 31, 2015
Our experimental studies of electron transport in wide (14 nm) HgTe quantum wells confirm persistence of a two-dimensional topological insulator state reported previously for narrower wells, where it was justified theoretically. Comparison of local and nonlocal resistance measurements indicate edge state transport in the samples of about 1 mm size at temperatures below 1 K. Temperature dependence of the resistances suggests an insulating gap of the order of a few meV. In samp...
January 6, 2009
We investigate an effective low energy theory of HgTe quantum wells near their mass inversion thickness in a perpendicular magnetic field. By comparison of the effective band structure with a more elaborated and well-established model, the parameter regime and the validity of the effective model is scrutinized. Optical transitions in HgTe quantum wells are analyzed. We find selection rules which we functionalize to optically manipulate edge state transport. Qualitatively, our...
September 16, 2016
We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and two-fold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional two-fold rotation symmetry is mediated by an emergent stable two-dimensional Wey...
September 14, 2017
We show that burying of the Dirac point in semiconductor-based quantum-spin-Hall systems can generate unexpected robustness of edge states to magnetic fields. A detailed ${\bf k\cdot p}$ band-structure analysis reveals that InAs/GaSb and HgTe/CdTe quantum wells exhibit such buried Dirac points. By simulating transport in a disordered system described within an effective model, we further demonstrate that buried Dirac points yield nearly quantized edge conduction out to large ...
November 16, 2018
We report on observation of an unconventional structure of the quantum Hall effect (QHE) in a $ p$-type HgTe/Cd$_x$Hg$_{1-x}$Te double quantum well (DQW) consisting of two HgTe layers of critical width. The observed QHE is a reentrant function of magnetic field between two $i=2$ states (plateaus at $\rho_{xy}=h/ie^2$) separated by an intermediate $i=1$ state, which looks like some anomalous peak on the extra-long $i=2$ plateau when weakly expressed. The anomalous peak apparen...