April 26, 2002
This paper reviews a class of generic dissipative dynamical systems called N-K models. In these models, the dynamics of N elements, defined as Boolean variables, develop step by step, clocked by a discrete time variable. Each of the N Boolean elements at a given time is given a value which depends upon K elements in the previous time step. We review the work of many authors on the behavior of the models, looking particularly at the structure and lengths of their cycles, the...
November 15, 2007
The growth in number and nature of dynamical attractors in Kauffman NK network models are still not well understood properties of these important random boolean networks. Structural circuits in the underpinning graph give insights into the number and length distribution of attractors in the NK model. We use a fast direct circuit enumeration algorithm to study the NK model and determine the growth behaviour of structural circuits. This leads to an explanation and lower bound o...
April 24, 2009
We clarify the effect different sampling methods and weighting schemes have on the statistics of attractors in ensembles of random Boolean networks (RBNs). We directly measure cycle lengths of attractors and sizes of basins of attraction in RBNs using exact enumeration of the state space. In general, the distribution of attractor lengths differs markedly from that obtained by randomly choosing an initial state and following the dynamics to reach an attractor. Our results indi...
August 28, 1997
This is the first of two papers about the structure of Kauffman networks. In this paper we define the relevant elements of random networks of automata, following previous work by Flyvbjerg and Flyvbjerg and Kjaer, and we study numerically their probability distribution in the chaotic phase and on the critical line of the model. A simple approximate argument predicts that their number scales as sqrt(N) on the critical line, while it is linear with N in the chaotic phase and in...
February 10, 2023
The critical Kauffman model with connectivity one is the simplest class of critical Boolean networks. Nevertheless, it exhibits intricate behavior at the boundary of order and chaos. We introduce a formalism for expressing the dynamics of multiple loops as a product of the dynamics of individual loops. Using it, we prove that the number of attractors scales as $2^m$, where $m$ is the number of nodes in loops - as fast as possible, and much faster than previously believed.
The Kauffman model of genetic computation highlights the importance of criticality at the border of order and chaos. But our understanding of its behavior is incomplete, and much of what we do know relies on heuristic arguments. To better understand the model and obtain more rigorous insights, we show that there are fundamental links between the critical Kauffman model and aspects of number theory. Using these connections, we prove that the number of attractors and the mean a...
May 19, 2005
Despite their apparent simplicity, random Boolean networks display a rich variety of dynamical behaviors. Much work has been focused on the properties and abundance of attractors. The topologies of random Boolean networks with one input per node can be seen as graphs of random maps. We introduce an approach to investigating random maps and finding analytical results for attractors in random Boolean networks with the corresponding topology. Approximating some other non-chaotic...
March 10, 2010
We introduce a numerical method to study random Boolean networks with asynchronous stochas- tic update. Each node in the network of states starts with equal occupation probability and this probability distribution then evolves to a steady state. Nodes left with finite occupation probability determine the attractors and the sizes of their basins. As for synchronous update, the basin entropy grows with system size only for critical networks, where the distribution of attractor ...
April 27, 2005
Boolean Networks have been used to study numerous phenomena, including gene regulation, neural networks, social interactions, and biological evolution. Here, we propose a general method for determining the critical behavior of Boolean systems built from arbitrary ensembles of Boolean functions. In particular, we solve the critical condition for systems of units operating according to canalizing functions and present strong numerical evidence that our approach correctly predic...
October 31, 2005
Complexity theory as practiced by physicists and computational complexity theory as practiced by computer scientists both characterize how difficult it is to solve complex problems. Here it is shown that the parameters of a specific model can be adjusted so that the problem of finding its global energy minimum is extremely sensitive to small changes in the problem statement. This result has implications not only for studies of the physics of random systems but may also lead t...