July 31, 2006
We minimize the dissipation rate of an electrical network under a global constraint on the sum of powers of the conductances. We construct the explicit scaling relation between currents and conductances, and show equivalence to a a previous model [J. R. Banavar {\it et al} Phys. Rev. Lett. {\bf 84}, 004745 (2000)] optimizing a power-law cost function in an abstract network. We show the currents derive from a potential, and the scaling of the conductances depends only locally ...
September 17, 2020
Neural networks have been achieving high generalization performance on many tasks despite being highly over-parameterized. Since classical statistical learning theory struggles to explain this behavior, much effort has recently been focused on uncovering the mechanisms behind it, in the hope of developing a more adequate theoretical framework and having a better control over the trained models. In this work, we adopt an alternate perspective, viewing the neural network as a d...
January 27, 2016
We consider two different variational models of transport networks, the so-called branched transport problem and the urban planning problem. Based on a novel relation to Mumford-Shah image inpainting and techniques developed in that field, we show for a two-dimensional situation that both highly non-convex network optimization tasks can be transformed into a convex variational problem, which may be very useful from analytical and numerical perspectives. As applications of t...
October 14, 2010
In this paper, we study the role of boundary conditions on the optimal shape of a dyadic tree in which flows a Newtonian fluid. Our optimization problem consists in finding the shape of the tree that minimizes the viscous energy dissipated by the fluid with a constrained volume, under the assumption that the total flow of the fluid is conserved throughout the structure. These hypotheses model situations where a fluid is transported from a source towards a 3D domain into which...
April 13, 2004
We address Newton-type problems of minimal resistance from an optimal control perspective. It is proven that for Newton-type problems the Pontryagin maximum principle is a necessary and sufficient condition. Solutions are then computed for concrete situations, including the new case when the flux of particles is non-parallel.
October 23, 2008
We consider an incompressible fluid in a three-dimensional pipe, following the Navier-Stokes system with classical boundary conditions. We are interested in the following question: is there any optimal shape for the criterion "energy dissipated by the fluid"? Moreover, is the cylinder the optimal shape? We prove that there exists an optimal shape in a reasonable class of admissible domains, but the cylinder is not optimal. For that purpose, we explicit the first order optimal...
September 9, 2023
Finding optimal trajectories for multiple traffic demands in a congested network is a challenging task. Optimal transport theory is a principled approach that has been used successfully to study various transportation problems. Its usage is limited by the lack of principled and flexible ways to incorporate realistic constraints. We propose a principled physics-based approach to impose constraints flexibly in such optimal transport problems. Constraints are included in mirror ...
October 7, 2017
This article gives an introduction to optimal transport, a mathematical theory that makes it possible to measure distances between functions (or distances between more general objects), to interpolate between objects or to enforce mass/volume conservation in certain computational physics simulations. Optimal transport is a rich scientific domain, with active research communities, both on its theoretical aspects and on more applicative considerations, such as geometry processi...
November 8, 2023
Despite its importance for practical applications, not much is known about the optimal shape of a network that connects in an efficient way a set of points. This problem can be formulated in terms of a multiplex network with a fast layer embedded in a slow one. To connect a pair of points, one can then use either the fast or slow layer, or both, with a switching cost when going from one layer to the other. We consider here distributions of points in spaces of arbitrary dimens...
September 19, 2021
This paper presents a Wasserstein attraction approach for solving dynamic mass transport problems over networks. In the transport problem over networks, we start with a distribution over the set of nodes that needs to be "transported" to a target distribution accounting for the network topology. We exploit the specific structure of the problem, characterized by the computation of implicit gradient steps, and formulate an approach based on discretized flows. As a result, our p...