January 2, 2007
Similar papers 3
November 6, 2024
Inspired by its central role in many biological processes, the transport of biopolymers across nanoscale pores is at the heart of a single-molecule sensing technology aimed at nucleic acid and protein sequencing, as well as biomarker detection. When electrophoretically driven through a pore by an electric potential gradient, a translocating polymer hinders the flow of ions, producing a transient current blockage signature that can be mapped to physicochemical properties of th...
May 13, 1999
In this paper we establish a new efficient method for simulating polymer-solvent systems which combines a lattice Boltzmann approach for the fluid with a continuum molecular dynamics (MD) model for the polymer chain. The two parts are coupled by a simple dissipative force while the system is driven by stochastic forces added to both the fluid and the polymer. Extensive tests of the new method for the case of a single polymer chain in a solvent are performed. The dynamic and s...
May 12, 2016
We investigate the driven polymer translocation through a nanometer-scale pore in the presence and absence of hydrodynamics both in good and bad solvent. We present our results on tension propagating along the polymer segment on the cis-side that is measured for the first time using our method that works also in the presence of hydrodynamics. For simulations we use stochastic rotation dynamics, also called multi-particle collision dynamics. We find that in the good solvent th...
March 29, 2009
We present a comparative study of two computer simulation methods to obtain static and dynamic properties of dilute polymer solutions. The first approach is a recently established hybrid algorithm based upon dissipative coupling between Molecular Dynamics and lattice Boltzmann (LB), while the second is standard Brownian Dynamics (BD) with fluctuating hydrodynamic interactions. Applying these methods to the same physical system (a single polymer chain in a good solvent in ther...
February 27, 2009
We discuss multiscale simulations of long biopolymer translocation through wide nanopores that can accommodate multiple polymer strands. The simulations provide clear evidence of folding quantization, namely, the translocation proceeds through multi-folded configurations characterized by a well-defined integer number of folds. As a consequence, the translocation time acquires a dependence on the average folding number, which results in a deviation from the single-exponent pow...
January 22, 2007
We investigate the translocation dynamics of heteropolymers driven through a nanopore using a constant temperature Langevin thermostat. Specifically, we consider heteropolymers consisting of two types of monomers labeled A and B, which are distinguished by the magnitude of the driving force that they experience inside the pore. From a series of studies on polymers with sequences AnBn+m we identify both universal as well as sequence specific properties of the translocating cha...
September 14, 2012
The translocation of a polymer through a pore in a membrane separating fluids of different viscosities is studied via several computational approaches. Starting with the polymer halfway, we find that as a viscosity difference across the pore is introduced, translocation will predominately occur towards one side of the membrane. These results suggest an intrinsic pumping mechanism for translocation across cell walls which could arise whenever the fluid across the membrane is i...
May 28, 2008
Using Langevin dynamics simulations, we investigate the influence of polymer-pore interactions on the dynamics of biopolymer translocation through nanopores. We find that an attractive interaction can significantly change the translocation dynamics. This can be understood by examining the three components of the total translocation time $\tau \approx \tau_1+\tau_2+\tau_3$ corresponding to the initial filling of the pore, transfer of polymer from the \textit{cis} side to the \...
August 2, 2011
Using Langevin dynamics simulations, we investigate the dynamics of chaperone-assisted translocation of a flexible polymer through a nanopore. We find that increasing the binding energy $\epsilon$ between the chaperone and the chain and the chaperone concentration $N_c$ can greatly improve the translocation probability. Particularly, with increasing the chaperone concentration a maximum translocation probability is observed for weak binding. For a fixed chaperone concentratio...
June 18, 2013
We consider voltage-driving DNA translocation through a nanopore in the present study. By assuming the DNA is coaxial with the cylindrical nanopore, a hydrodynamic model for determining effective force on a single DNA molecule in a nanopore was presented, in which density functional theory (DFT) combined with the continuum Navier-Stokes (NS) equations is utilized to investigate electro-osmotic flow and the viscous drag force acting on the DNA inside a nanopore. Surface charge...