April 20, 2001
Similar papers 4
May 8, 2024
Most, if not all, photonic quantum computing (PQC) relies upon superconducting nanowire single-photon detectors (SNSPDs) based on Nb operated at a temperature < 4 K. This paper proposes and analyzes 300 K Si-waveguide-integrated GeSi single-photon avalanche diodes (SPADs) based on the recently demonstrated normal-incidence GeSi SPADs operated at room temperature, and shows that their performance is competitive against that of SNSPDs in a series of metrics for PQC with a reaso...
October 16, 2024
Accurate characterization of quantum yield is crucial to the reconstruction of energy depositions in silicon at the eV scale. This work presents a new method for experimentally calculating quantum yield using vacuum UV-sensitive silicon photomultipliers (SiPMs), which can be used to determine the probabilities that a UV photon absorbed in a silicon crystal will produce one, two, or three electron-hole pairs. Results are presented which fully constrain the distribution at phot...
May 7, 2019
Integrated quantum photonics, which allows for the development and implementation of chip-scale devices, is recognized as a key enabling technology on the road towards scalable quantum networking schemes. However, many state-of-the-art integrated quantum photonics demonstrations still require the coupling of light to external photodetectors. On-chip silicon single-photon avalanche diodes (SPADs) provide a viable solution as they can be seamlessly integrated with photonic comp...
April 13, 2022
In practical quantum key distribution systems, imperfect physical devices open security loopholes that challenge the core promise of this technology. Apart from various side channels, a vulnerability of single-photon detectors to blinding attacks has been one of the biggest concerns, and has been addressed both by technical means as well as advanced protocols. In this work, we present a countermeasure against such attacks based on self-testing of detectors to confirm their in...
February 6, 2025
In this article, we experimentally demonstrate an eavesdropper's (Eve's) information gain by exploiting the breakdown flash generated by the single photon avalanche detector (SPAD) used in coherent one-way quantum key distribution (COW-QKD) setup. Unlike prior studies focusing on the device-level characterization of backflash photons, this work quantifies Eve's learning with a QKD system that includes a key distillation engine (KDE). Eve's learning is quantified using the bac...
August 2, 2012
By employing real-time monitoring of single-photon avalanche photodiodes we demonstrate how two types of practical eavesdropping strategies, the after-gate and time-shift attacks, may be detected. Both attacks are identified with the detectors operating without any special modifications, making this proposal well suited for real-world applications. The monitoring system is based on accumulating statistics of the times between consecutive detection events, and extracting the a...
February 3, 2022
Integrated technologies greatly enhance the prospects for practical quantum information processing and sensing devices based on trapped ions. High-speed and high-fidelity ion state readout is critical for any such application. Integrated detectors offer significant advantages for system portability and can also greatly facilitate parallel operations if a separate detector can be incorporated at each ion-trapping location. Here we demonstrate ion quantum state detection at roo...
April 29, 2020
A newfound security breach in the physical nature of single photon detectors that are generally used in quantum key distribution is explained, we found that the bit contents of a quantum key transmission system can be intercepted from far away by exploiting the ultrawideband electromagnetic signals radiated from hi-voltage avalanche effect of single photon detectors. It means that in fact any Geiger mode avalanche photodiode that is used inside single photon detectors systema...
May 18, 2009
We report a 1.036 GHz gated Geiger mode InGaAs avalanche photodiode with a detection dead time of just 1.93 ns. This is demonstrated by full recovery of the detection efficiency two gate cycles after a detection event, as well as a measured maximum detection rate of 497 MHz. As an application, we measure the second order correlation function $g^{(2)}$ of the emission from a diode laser with a single detector which works reliably at high speed owing to the extremely short dead...
August 8, 2015
A Silicon Photomultiplier, SiPM, is a metasystem of Avalanche Photodiodes, APDs, which embedded in a specific purpose electronic, becomes a metadevice with unique and useful advanced functionalities to capture, transmit and analyze information with increased efficiency and security. The SiPM is a very small state of the art photo-detector with very high efficiency and sensitivity, with good response to controlled light pulses in the presence of background light without satura...