October 11, 2016
In this thesis we focus on Gaussian quantum metrology in the phase-space formalism and its applications in quantum sensing and the estimation of space-time parameters. We derive new formulae for the optimal estimation of multiple parameters encoded into Gaussian states. We discuss the discontinuous behavior of the figure of merit - the quantum Fisher information. Using derived expressions we devise a practical method of finding optimal probe states for the estimation of Gauss...
September 11, 2009
The dynamics of a system, consisting of a particle initially in a Gaussian state interacting with a field mode, under the action of repeated measurements performed on the particle, is examined. It is shown that regardless of its initial state the field is distilled into a squeezed state. The dependence on the physical parameters of the dynamics is investigated.
November 15, 2023
High quality squeezed light is an important resource for a variety of applications. Multiple methods for generating squeezed light are known, having been demonstrated theoretically and experimentally. However, the effectiveness of these methods -- in particular, the inherent limitations to the signals that can be produced -- has received little consideration. Here we present a comparative theoretical analysis for generating a highly-displaced high-brightness squeezed light fr...
July 11, 2019
Some predictions of quantum mechanics are in contrast with the macroscopic realm of everyday experience, in particular those originated by the Heisenberg uncertainty principle, encoded in the non-commutativity of some measurable operators. Nonetheless, in the last decade opto-mechanical experiments have actualized macroscopic mechanical oscillators exhibiting such non-classical properties. A key indicator is the asymmetry in the strength of the motional sidebands generated in...
February 27, 2024
Quantum information processors greatly benefit from high clock frequency to fully harnessing the quantum advantages before they get washed out by the decoherence. In this pursuit, all-optical systems offer unique advantages due to their inherent 100 THz carrier frequency, permitting one to develop THz clock frequency processors. In practice, the bandwidth of the quantum light sources and the measurement devices has been limited to the MHz range and the generation rate of nonc...
June 14, 2009
We provide a framework for understanding recent experiments on squeezing of a collective atomic pseudo-spin, induced by a homodyne measurement on off-resonant probe light interrogating the atoms. The detection of light decimates the atomic state distribution and we discuss the conditions under which the resulting reduced quantum fluctuations are metrologically relevant. In particular, we consider a dual probe scheme which benefits from a cancelation of classical common mode n...
June 20, 2017
It has recently been shown that optical parametric oscillator (OPO) Ising machines, consisting of coupled optical pulses circulating in a cavity with parametric gain, can be used to probabilistically find low-energy states of Ising spin systems. In this work, we study optical Ising machines that operate under simplified Gaussian dynamics. We show that these dynamics are sufficient for reaching probabilities of success comparable to previous work. Based on this result, we prop...
May 27, 2006
We present a new technique for the detection of two-mode squeezed states of light that allows for a simple characterization of these quantum states. The usual detection scheme, based on heterodyne measurements, requires the use of a local oscillator with a frequency equal to the mean of the frequencies of the two modes of the squeezed field. As a result, unless the two modes are close in frequency, a high-frequency shot-noise-limited detection system is needed. We propose the...
May 14, 2017
We address measurement-based generation of quantum coherence in continuous variable systems. We consider Gaussian measurements performed on Gaussian states and focus on two scenarios. In the first one, we assume an initially correlated bipartite state shared by two parties and study how correlations may be exploited to remotely create quantum coherence via measurement back-action. In particular, we focus on conditional states with zero first moments, so as to address coherenc...
March 28, 2017
We investigated the estimation of an unknown Gaussian process (containing displacement, squeezing and phase-shift) applied to a matter system. The state of the matter system is not directly measured; instead, we measure an optical mode which interacts with the system. We propose an interferometric setup exploiting a beam-splitter-type of light-matter interaction with homodyne detectors and two methods of estimation. We demonstrate the superiority of the interferometric setup ...