We give the first numerical calculation of the spectrum of the Laplacian acting on bundle-valued forms on a Calabi-Yau three-fold. Specifically, we show how to compute the approximate eigenvalues and eigenmodes of the Dolbeault Laplacian acting on bundle-valued $(p,q)$-forms on K\"ahler manifolds. We restrict our attention to line bundles over complex projective space and Calabi-Yau hypersurfaces therein. We give three examples. For two of these, $\mathbb{P}^3$ and a Calabi-Y...
October 24, 2023
We construct all possible complete intersection Calabi-Yau five-folds in a product of four or less complex projective spaces, with up to four constraints. We obtain $27068$ spaces, which are not related by permutations of rows and columns of the configuration matrix, and determine the Euler number for all of them. Excluding the $3909$ product manifolds among those, we calculate the cohomological data for $12433$ cases, i.e. $53.7 \%$ of the non-product spaces, obtaining $2375...
July 27, 2020
We introduce a neural network inspired by Google's Inception model to compute the Hodge number $h^{1,1}$ of complete intersection Calabi-Yau (CICY) 3-folds. This architecture improves largely the accuracy of the predictions over existing results, giving already 97% of accuracy with just 30% of the data for training. Moreover, accuracy climbs to 99% when using 80% of the data for training. This proves that neural networks are a valuable resource to study geometric aspects in b...
October 30, 2023
We develop a theory of flows in the space of Riemannian metrics induced by neural network gradient descent. This is motivated in part by recent advances in approximating Calabi-Yau metrics with neural networks and is enabled by recent advances in understanding flows in the space of neural networks. We derive the corresponding metric flow equations, which are governed by a metric neural tangent kernel, a complicated, non-local object that evolves in time. However, many archite...
November 28, 2023
Calabi-Yau four-folds may be constructed as hypersurfaces in weighted projective spaces of complex dimension 5 defined via weight systems of 6 weights. In this work, neural networks were implemented to learn the Calabi-Yau Hodge numbers from the weight systems, where gradient saliency and symbolic regression then inspired a truncation of the Landau-Ginzburg model formula for the Hodge numbers of any dimensional Calabi-Yau constructed in this way. The approximation always prov...
January 27, 2021
We develop an algebro-geometric formulation for neural networks in machine learning using the moduli space of framed quiver representations. We find natural Hermitian metrics on the universal bundles over the moduli which are compatible with the GIT quotient construction by the general linear group, and show that their Ricci curvatures give a K\"ahler metric on the moduli. Moreover, we use toric moment maps to construct activation functions, and prove the universal approximat...
December 28, 2023
Calabi-Yau (CY) manifolds play a ubiquitous role in string theory. As a supersymmetry-preserving choice for the 6 extra compact dimensions of superstring compactifications, these spaces provide an arena in which to explore the rich interplay between physics and geometry. These lectures will focus on compact CY manifolds and the long standing problem of determining their Ricci flat metrics. Despite powerful existence theorems, no analytic expressions for these metrics are know...
June 11, 2017
We employ machine learning techniques to investigate the volume minimum of Sasaki-Einstein base manifolds of non-compact toric Calabi-Yau 3-folds. We find that the minimum volume can be approximated via a second order multiple linear regression on standard topological quantities obtained from the corresponding toric diagram. The approximation improves further after invoking a convolutional neural network with the full toric diagram of the Calabi-Yau 3-folds as the input. We a...
May 27, 2024
In this work, we report the results of applying deep learning based on hybrid convolutional-recurrent and purely recurrent neural network architectures to the dataset of almost one million complete intersection Calabi-Yau four-folds (CICY4) to machine-learn their four Hodge numbers $h^{1,1}, h^{2,1}, h^{3,1}, h^{2,2}$. In particular, we explored and experimented with twelve different neural network models, nine of which are convolutional-recurrent (CNN-RNN) hybrids with the R...
December 16, 2021
Using a fully connected feedforward neural network we study topological invariants of a class of Calabi--Yau manifolds constructed as hypersurfaces in toric varieties associated with reflexive polytopes from the Kreuzer--Skarke database. In particular, we find the existence of a simple expression for the Euler number that can be learned in terms of limited data extracted from the polytope and its dual.