March 25, 2022
Cluster algebras have recently become an important player in mathematics and physics. In this work, we investigate them through the lens of modern data science, specifically with techniques from network science and machine-learning. Network analysis methods are applied to the exchange graphs for cluster algebras of varying mutation types. The analysis indicates that when the graphs are represented without identifying by permutation equivalence between clusters an elegant symmetry emerges in the quiver exchange graph embedding. The ratio between number of seeds and number of quivers associated to this symmetry is computed for finite Dynkin type algebras up to rank 5, and conjectured for higher ranks. Simple machine learning techniques successfully learn to differentiate cluster algebras from their seeds. The learning performance exceeds 0.9 accuracies between algebras of the same mutation type and between types, as well as relative to artificially generated data.
Similar papers 1
December 19, 2022
Classification of cluster variables in cluster algebras (in particular, Grassmannian cluster algebras) is an important problem, which has direct application to computations of scattering amplitudes in physics. In this paper, we apply the tableaux method to classify cluster variables in Grassmannian cluster algebras $\mathbb{C}[Gr(k,n)]$ up to $(k,n)=(3,12), (4,10)$, or $(4,12)$ up to a certain number of columns of tableaux, using HPC clusters. These datasets are made availabl...
We initiate the study of applications of machine learning to Seiberg duality, focusing on the case of quiver gauge theories, a problem also of interest in mathematics in the context of cluster algebras. Within the general theme of Seiberg duality, we define and explore a variety of interesting questions, broadly divided into the binary determination of whether a pair of theories picked from a series of duality classes are dual to each other, as well as the multi-class determi...
Inspirited by the importance of the spectral theory of graphs, we introduce the spectral theory of valued cluster quiver of a cluster algebra. Our aim is to characterize a cluster algebra via its spectrum so as to use the spectral theory as a tool. First, we give the relations between exchange spectrum of a valued cluster quiver and adjacency spectrum of its underlying valued graph, and between exchange spectra of a valued cluster quiver and its full valued subquivers. The ...
November 11, 2008
In 2003, Fomin and Zelevinsky obtained Cartan-Killing type classification of all cluster algebras of finite type, i.e. cluster algebras having only finitely many distinct cluster variables. A wider class of cluster algebras is formed by cluster algebras of finite mutation type which have finitely many exchange matrices (but are allowed to have infinitely many cluster variables). In this paper we classify all cluster algebras of finite mutation type with skew-symmetric exchang...
September 29, 2023
There has been recent interest in novel Clifford geometric invariants of linear transformations. This motivates the investigation of such invariants for a certain type of geometric transformation of interest in the context of root systems, reflection groups, Lie groups and Lie algebras: the Coxeter transformations. We perform exhaustive calculations of all Coxeter transformations for $A_8$, $D_8$ and $E_8$ for a choice of basis of simple roots and compute their invariants, us...
December 1, 2016
An important problem in the theory of cluster algebras is to compute the fundamental group of the exchange graph. A non-trivial closed loop in the exchange graph, for example, generates a non-trivial identity for the classical and quantum dilogarithm functions. An interesting conjecture, partly motivated by dilogarithm functions, is that this fundamental group is generated by closed loops of mutations involving only two of the cluster variables. We present examples and counte...
In this paper, we prove some combinatorial results on generalized cluster algebras. To be more precisely, we prove that (i) the seeds of a generalized cluster algebra $\mathcal A(\mathcal S)$ whose clusters contain particular cluster variables form a connected subgraph of the exchange graph of $\mathcal A(\mathcal S)$; (ii) there exists a bijection from the set of cluster variables of a generalized cluster algebra to the set of cluster variables of another generalized cluster...
August 29, 2002
This paper continues the study of cluster algebras initiated in math.RT/0104151. Its main result is the complete classification of the cluster algebras of finite type, i.e., those with finitely many clusters. This classification turns out to be identical to the Cartan-Killing classification of semisimple Lie algebras and finite root systems, which is intriguing since in most cases, the symmetry exhibited by the Cartan-Killing type of a cluster algebra is not at all apparent f...
February 26, 2024
For a fixed seed $(X, Q)$, a \emph{rooted mutation loop} is a sequence of mutations that preserves $(X, Q)$. The group generated by all rooted mutation loops is called \emph{rooted mutation group} and will be denoted by $\mathcal{M}(Q)$. Let $\mathcal{M}$ be the global mutation group. In this article, we show that two finite type cluster algebras $\mathcal{A}(Q)$ and $\mathcal{A}(Q')$ are isomorphic if and only if their rooted mutation groups are isomorphic and the sets $\mat...
December 29, 2022
Graph clustering is a fundamental problem in unsupervised learning, with numerous applications in computer science and in analysing real-world data. In many real-world applications, we find that the clusters have a significant high-level structure. This is often overlooked in the design and analysis of graph clustering algorithms which make strong simplifying assumptions about the structure of the graph. This thesis addresses the natural question of whether the structure of c...