ID: 2204.14235

Permuting the roots of univariate polynomials whose coefficients depend on parameters

April 29, 2022

View on ArXiv
Alexander Esterov, Lionel Lang
Mathematics
Algebraic Geometry
General Topology

We address two interrelated problems concerning permutation of roots of univariate polynomials whose coefficients depend on parameters. First, we compute the Galois group of polynomials $\varphi(x)\in\mathbb{C}[t_1,\cdots,t_k][x]$ over $\mathbb{C}(t_1,\cdots,t_k)$. Provided that the corresponding multivariate polynomial $\varphi(x,t_1,\cdots,t_k)$ is generic with respect to its support $A\subset \mathbb{Z}^{k+1}$, we determine the latter Galois group for any $A$. Second, we determine the Galois group of systems of polynomial equations of the form $p(x,t)=q(t)=0 $ where $p$ and $q$ have prescribed support sets $A_1\subset \mathbb{Z}^2$ and $A_2\subset \{0\}\times \mathbb{Z}$ respectively. For each problem, we determine the image of an appropriate braid monodromy map in order to compute the sought Galois group. Among the applications, we compute the Galois group of any rational function that is generic with respect to its support. We also provide general obstructions on the Galois group of enumerative problems over algebraic groups.

Similar papers 1

Alexander Esterov, Lionel Lang
Algebraic Geometry

We introduce a new technique to prove connectivity of subsets of covering spaces (so called inductive connectivity), and apply it to Galois theory of problems of enumerative geometry. As a model example, consider the problem of permuting the roots of a complex polynomial $f(x) = c_0 + c_1 x^{d_1} + \ldots + c_k x^{d_k}$ by varying its coefficients. If the GCD of the exponents is $d$, then the polynomial admits the change of variable $y=x^d$, and its roots split into necklaces...

Jonathan D. Hauenstein, Jose Israel Rodriguez, Frank Sottile
Algebraic Geometry
Numerical Analysis
Number Theory

The Galois/monodromy group of a family of geometric problems or equations is a subtle invariant that encodes the structure of the solutions. Computing monodromy permutations using numerical algebraic geometry gives information about the group, but can only determine it when it is the full symmetric group. We give numerical methods to compute the Galois group and study it when it is not the full symmetric group. One algorithm computes generators while the other gives informati...

Frank Sottile, Thomas Yahl
Algebraic Geometry

As Jordan observed in 1870, just as univariate polynomials have Galois groups, so do problems in enumerative geometry. Despite this pedigree, the study of Galois groups in enumerative geometry was dormant for a century, with a systematic study only occuring in the past 15 years. We discuss the current directions of this study, including open problems and conjectures.

Claus Fieker, Jürgen Klüners
Number Theory

Computational Galois theory, in particular the problem of computing the Galois group of a given polynomial is a very old problem. Currently, the best algorithmic solution is Stauduhar's method. Computationally, one of the key challenges in the application of Stauduhar's method is to find, for a given pair of groups H<G a G-relative H-invariant, that is a multivariate polynomial F that is H-invariant, but not G-invariant. While generic, theoretical methods are known to find su...

Pierre Dèbes, Joachim König, ... , Neftin Danny
Number Theory

Given fields $k \subseteq L$, our results concern one parameter $L$-parametric polynomials over $k$, and their relation to generic polynomials. The former are polynomials $P(T,Y) \in k[T][Y]$ of group $G$ which parametrize all Galois extensions of $L$ of group $G$ via specialization of $T$ in $L$, and the latter are those which are $L$-parametric for every field $L \supseteq k$. We show, for example, that being $L$-parametric with $L$ taken to be the single field $\mathbb{C}(...

Annette Maier
Commutative Algebra
Group Theory

In this article, we consider the inverse Galois problem for parameterized differential equations over k((t))(x) with k any field of characteristic zero and use the method of patching over fields due to Harbater and Hartmann. As an application, we prove that every connected semisimple k((t))-split linear algebraic group is a parameterized Galois group over k((t))(x).

David Krumm, Nicole Sutherland
Number Theory

Let $P\in\mathbb Q[t,x]$ be a polynomial in two variables with rational coefficients, and let $G$ be the Galois group of $P$ over the field $\mathbb Q(t)$. It follows from Hilbert's Irreducibility Theorem that for most rational numbers $c$ the specialized polynomial $P(c,x)$ has Galois group isomorphic to $G$ and factors in the same way as $P$. In this paper we discuss methods for computing the group $G$ and obtaining an explicit description of the exceptional numbers $c$, i....

Song Li
Rings and Algebras
Data Structures and Algorith...
Group Theory

This work provides a method(an algorithm) for solving the solvable unary algebraic equation $f(x)=0$ ($f(x)\in\mathbb{Q}[x]$) of arbitrary degree and obtaining the exact radical roots. This method requires that we know the Galois group as the permutation group of the roots of $f(x)$ and the approximate roots with sufficient precision beforehand. Of course, the approximate roots are not necessary but can help reduce the quantity of computation. The algorithm complexity is appr...

Tali Monderer, Danny Neftin
Number Theory
Group Theory

Given an irreducible bivariate polynomial $f(t,x)\in \mathbb{Q}[t,x]$, what groups $H$ appear as the Galois group of $f(t_0,x)$ for infinitely many $t_0\in \mathbb{Q}$? How often does a group $H$ as above appear as the Galois group of $f(t_0,x)$, $t_0\in \mathbb{Q}$? We give an answer for $f$ of large $x$-degree with alternating or symmetric Galois group over $\mathbb{Q}(t)$. This is done by determining the low genus subcovers of coverings $\tilde{X}\rightarrow \mathbb{P}^1_{...

Carlos Améndola, Julia Lindberg, Jose Israel Rodriguez
Algebraic Geometry
Numerical Analysis
Numerical Analysis

The Galois group of a parameterized polynomial system of equations encodes the structure of the solutions. This monodromy group acts on the set of solutions for a general set of parameters, that is, on the fiber of a projection from the incidence variety of parameters and solutions onto the space of parameters. When this projection is decomposable, the Galois group is imprimitive, and we show that the structure can be exploited for computational improvements. Furthermore, we ...