June 29, 2011
In this paper we show that for any $k\geq2$, there exist two universal constants $C_k,D_k>0$, such that for any finite subset $A$ of positive real numbers with $|AA|\leq M|A|$, $|kA|\geq \frac{C_k}{M^{D_k}}\cdot|A|^{\log_42k}.$
July 23, 2011
Assume that $A\subseteq \Fp, B\subseteq \Fp^{*}$, $\1/4\leqslant\frac{|B|}{|A|},$ $|A|=p^{\alpha}, |B|=p^{\beta}$. We will prove that for $p\geqslant p_0(\beta)$ one has $$\sum_{b\in B}E_{+}(A, bA)\leqslant 15 p^{-\frac{\min\{\beta, 1-\alpha\}}{308}}|A|^3|B|.$$ Here $E_{+}(A, bA)$ is an additive energy between subset $A$ and it's multiplicative shift $bA$. This improves previously known estimates of this type.
May 15, 2022
We develop the theory of the additive dimension ${\rm dim} (A)$, i.e. the size of a maximal dissociated subset of a set $A$. It was shown that the additive dimension is closely connected with the growth of higher sumsets $nA$ of our set $A$. We apply this approach to demonstrate that for any small multiplicative subgroup $\Gamma$ the sequence $|n\Gamma|$ grows very fast. Also, we obtain a series of applications to the sum--product phenomenon and to the Balog--Wooley decomposi...
July 18, 2016
We prove new exponents for the energy version of the Erd\H{o}s-Szemer\'edi sum-product conjecture, raised by Balog and Wooley. They match the previously established milestone values for the standard formulation of the question, both for general fields and the special case of real or complex numbers, and appear to be the best ones attainable within the currently available technology. Further results are obtained about multiplicative energies of additive shifts and a strengthen...
March 19, 2019
Let $\mathbb{F}_q$ denote the finite field with $q$ elements where $q=p^l$ is a prime power. Using Fourier analytic tools with a third moment method, we obtain sum-product type estimates for subsets of $\mathbb{F}_q$. In particular, we prove that if $A\subset \mathbb{F}_q$, then $$|AA+A|,|A(A+A)|\gg\min\left\{q, \frac{|A|^2}{q^{\frac{1}{2}}} \right\},$$ so that if $A\ge q^{\frac{3}{4}}$, then $|AA+A|,|A(A+A)|\gg q$.
March 15, 2021
We improve the exponent in the finite field sum-product problem from $11/9$ to $5/4$, improving the results of Rudnev, Shakan and Shkredov. That is, we show that if $A\subset \mathbb{F}_p$ has cardinality $|A|\ll p^{1/2}$ then \[ \max\{|A\pm A|,|AA|\} \gtrsim |A|^\frac54 \] and \[ \max\{|A\pm A|,|A/A|\}\gtrsim |A|^\frac54\,. \]
November 23, 2020
For $p$ being a large prime number, and $A \subset \mathbb{F}_p$ we prove the following: $(i)$ If $A(A+A)$ does not cover all nonzero residues in $\mathbb{F}_p$, then $|A| < p/8 + o(p)$. $(ii)$ If $A$ is both sum-free and satisfies $A = A^*$, then $|A| < p/9 + o(p)$. $(iii)$ If $|A| \gg \frac{\log\log{p}}{\sqrt{\log{p}}}p$, then $|A + A^*| \geqslant (1 - o(1))\min(2\sqrt{|A|p}, p)$. Here the constants $1/8$, $1/9$, and $2$ are the best possible. The proof involves \em...
May 26, 2017
Using some new observations connected to higher energies, we obtain quantitative lower bounds on $\max\{|AB|, |A+C| \}$ and $\max\{|(A+\alpha)B|, |A+C|\}$, $\alpha \neq 0$ in the regime when the sizes of finite subsets $A,B,C$ of a field differ significantly.
November 11, 2010
This note improves the best known exponent 1/12 in the prime field sum-product inequality (for small sets) to 1/11, modulo a logarithmic factor.
October 5, 2014
In recent years some near-optimal estimates have been established for certain sum-product type estimates. This paper gives some first extremal results which provide information about when these bounds may or may not be tight. The main tool is a new result which provides a nontrivial upper bound on the multiplicative energy of a sum set or difference set.