June 29, 1998
Similar papers 4
August 7, 2007
In this letter, we describe operation of a radio-frequency superconducting single electron transistor (RF-SSET) with an on-chip superconducting LC matching network consisting of a spiral inductor L and its capacitance to ground. The superconducting network has a lower parasitic capacitance and gives a better matching for the RF-SSET than does a commercial chip inductor. Moreover, the superconducting network has negligibly low dissipation, leading to sensitive response to chan...
July 13, 2020
We explore phonon-mediated quantum transport through electronic noise characterization of a commercial CMOS transistor. The device behaves as a single electron transistor thanks to a single impurity atom in the channel. A low noise cryogenic CMOS transimpedance amplifier is exploited to perform low-frequency noise characterization down to the single electron, single donor and single phonon regime simultaneously, not otherwise visible through standard stability diagrams. Singl...
June 18, 2018
This letter investigates the bias-dependent low frequency noise of single layer graphene field-effect transistors. Noise measurements have been conducted with electrolyte-gated graphene transistors covering a wide range of gate and drain bias conditions for different channel lengths. A new analytical model that accounts for the propagation of the local noise sources in the channel to the terminal currents and voltages is proposed in this paper to investigate the noise bias de...
April 9, 2017
We report on combined measurements of heat and charge transport through a single-electron transistor. The device acts as a heat switch actuated by the voltage applied on the gate. The Wiedemann-Franz law for the ratio of heat and charge conductances is found to be systematically violated away from the charge degeneracy points. The observed deviation agrees well with the theoretical expectation. With large temperature drop between the source and drain, the heat current away fr...
April 17, 2003
The radio frequency single electron transistor (rf-SET) possesses key requirements necessary for reading out a solid state quantum computer. This work explores the use of the rf-SET as a single-shot readout device in the presence of 1/f and telegraph charge noise. For a typical spectrum of 1/f noise we find that high fidelity, single-shot measurements are possible for signals q > 0.01e. For the case of telegraph noise, we present a cross-correlation measurement technique that...
December 15, 2009
We consider the fully overheated single-electron transistor, where the heat balance is determined entirely by electron transfers. We find three distinct transport regimes corresponding to cotunneling, single-electron tunneling, and a competition between the two. We find an anomalous sensitivity to temperature fluctuations at the crossover between the two latter regimes that manifests in an exceptionally large Fano factor of current noise.
May 17, 2002
We have developed a novel system consisting of a superconducting single-electron transistor (S-SET) coupled to a two-dimensional electron gas (2DEG), for which the dissipation can be tuned in the immediate vicinity of the S-SET. To analyze our results, we have developed a model of the environment for S-SET/2DEG systems that includes electromagnetic fluctuations coupled both through the S-SET leads and capacitively to the S-SET central island. We analyze this model, treating t...
June 1, 2000
Radio-frequency (rf)- operated single-electron transistors (SETs) are high-sensitivity, fast-response electrometers, which are valuable for developing new insights into single-charge dynamics. We investigate high-frequency (up to 1 MHz) charge noise in an AlGaAs/GaAs quantum dot using a transmission-type rf-SET technique. The electron capture and emission kinetics on a trap in the vicinity of the quantum dot are dominated by a Poisson process. The maximum bandwidth for measur...
May 18, 2010
We analyze the charge dynamics of a superconducting single-electron transistor (SSET) in the regime where charge transport occurs via Cooper-pair resonances. Using an approximate description of the system Hamiltonian, in terms of a series of resonant doublets, we derive a Born-Markov master equation describing the dynamics of the SSET. The average current displays sharp peaks at the Cooper-pair resonances and we find that the charge noise spectrum has a characteristic structu...
June 9, 1998
The linear conductance of the single electron transistor is determined in the high temperature limit. Electron tunneling is treated nonperturbatively by means of a path integral formulation and the conductance is obtained from Kubo's formula. The theoretical predictions are valid for arbitrary conductance and found to explain recent experimental data.