January 30, 2006
Similar papers 3
December 12, 2018
We consider D3-brane gauge theories at an arbitrary toric Calabi-Yau 3-fold cone singularity that are then further compactified on a Riemann surface $\Sigma_g$, with an arbitrary partial topological twist for the global $U(1)$ symmetries. This constitutes a rich, infinite class of two-dimensional $(0,2)$ theories. Under the assumption that such a theory flows to a SCFT, we show that the supergravity formulas for the central charge and $R$-charges of BPS baryonic operators of ...
August 31, 2021
Adopting the Mahler measure from number theory, we introduce it to toric quiver gauge theories, and study some of its salient features and physical implications. We propose that the Mahler measure is a universal measure for the quiver, encoding its dynamics with the monotonic behaviour along a so-called Mahler flow including two special points at isoradial and tropical limits. Along the flow, the amoeba, from tropical geometry, provides geometric interpretations for the dynam...
March 8, 2006
Abelian quiver gauge theories provide nonsupersymmetric candidates for the conformality approach to physics beyond the standard model. Written as ${\cal N}=0$, $U(N)^n$ gauge theories, however, they have mixed $U(1)_p U(1)_q^2$ and $U(1)_p SU(N)_q^2$ triangle anomalies. It is shown how to construct explicitly a compensatory term $\Delta{\cal L}_{comp}$ which restores gauge invariance of ${\cal L}_{eff} = {\cal L} + \Delta {\cal L}_{comp}$ under $U(N)^n$. It can lead to a nega...
February 17, 2017
We obtain an integral formula for the volume of non-toric tri-Sasaki Einstein manifolds arising from nonabelian hyperkahler quotients. The derivation is based on equivariant localization and generalizes existing formulas for Abelian quotients, which lead to toric manifolds. The formula is particularly valuable in the context of AdS$_{4}\times Y_{7}$ vacua of M-theory and their field theory duals. As an application, we consider 3d $\mathcal N=3$ Chern-Simons theories with affi...
March 19, 2005
We propose a duality between quiver gauge theories and the combinatorics of dimer models. The connection is via toric diagrams together with multiplicities associated to points in the diagram (which count multiplicities of fields in the linear sigma model construction of the toric space). These multiplicities may be computed from both sides and are found to agree in all known examples. The dimer models provide new insights into the quiver gauge theories: for example they prov...
December 2, 2016
We present a general solution to the problem of determining all S-dual descriptions for a specific (but very rich) class of $\mathcal{N} = 1$ SCFTs. These SCFTs are indexed by decorated toric diagrams, and can be engineered in string theory by probing orientifolds of isolated toric singularities with D3 branes. The S-dual phases are described by quiver gauge theories coupled to specific types of conformal matter which we describe explicitly. We illustrate our construction wit...
November 22, 2022
We consider the phase structure of the linear quiver gauge theory, using the 't Hooft anomaly matching condition. This theory is characterized by the length $K$ of the quiver diagram. When $K$ is even, the symmetry and its anomaly are the same as those of massless QCD. Therefore, one can expect that the spontaneous symmetry breaking similar to the chiral symmetry breaking occurs. On the other hand, when $K$ is odd, the anomaly matching condition is satisfied by the massless c...
September 15, 2009
We demonstrate a practical and efficient method for generating toric Calabi-Yau quiver theories, applicable to both D3 and M2 brane world-volume physics. A new analytic method is presented at low order parametres and an algorithm for the general case is developed which has polynomial complexity in the number of edges in the quiver. Using this algorithm, carefully implemented, we classify the quiver diagram and assign possible superpotentials for various small values of the nu...
July 1, 2021
We introduce and initiate the study of a general class of $2d$ $\mathcal{N}=(0,2)$ quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT$_2$$\mbox{'}$s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underly...
December 23, 2004
We construct all connected toric phases of the recently discovered $Y^{p,q}$ quivers and show their IR equivalence using Seiberg duality. We also compute the R and global U(1) charges for a generic toric phase of $Y^{p,q}$.