November 10, 2004
Similar papers 4
June 21, 2015
We demonstrate a compact iodine-stabilized laser operating at 531 nm using a coin-sized light source consisting of a 1062-nm distributed-feedback diode laser and a frequency-doubling element. A hyperfine transition of molecular iodine is observed using the light source with saturated absorption spectroscopy. The light source is frequency stabilized to the observed iodine transition and achieves frequency stability at the 10$^{-12}$ level. The absolute frequency of the compact...
December 16, 2012
A combination of optical feedback self-locking of a continuous-wave distributed feedback diode laser to a V-shaped high finesse cavity, laser phase modulation at a frequency equal to the free spectral range of the V-cavity and detection of the transmitted laser beam at this high modulation frequency is described for possible application in cavity-enhanced absorption spectroscopy.In order to estimate an absorbance baseline noise of laser intensity and frequency modulated light...
July 29, 2011
We report the relative frequency stabilization of an intracavity frequency doubled singly resonant optical parametric oscillator on a Fabry-Perot\'etalon. The red/orange radiation produced by the frequency doubling of the intracavity resonant idler is stabilized using the Pound-Drever-Hall locking technique. The relative frequency noise of this orange light, when integrated from 1 Hz to 50 kHz, corresponds to a standard deviation of 700 Hz. The frequency noise of the pump las...
May 9, 2016
Optical frequency combs provide the clockwork to relate optical frequencies to radio frequencies. Hence, combs allow to measure optical frequencies with respect to a radio frequency where the accuracy is limited only by the reference signal. In order to provide a stable link between the radio and optical frequencies, the two parameters of the frequency comb must be fixed: the carrier envelope offset frequency $f_{\rm ceo}$ and the pulse repetition-rate $f_{\rm rep}$. We have ...
April 23, 2024
We introduce a novel time-division multiplexing differential saturated absorption spectroscopy (TDMDSAS) approach, providing superior accuracy and stability in Doppler-free spectroscopy. By distinguishing probe and reference fields in the temporal domain, TDMDSAS efficiently suppresses Doppler broadening and common-mode optical noise. We utilized this technology to determine the absolute frequency of diverse neutral Yb isotopes across its $6s^2\ ^{1}S_0\to 6s6p ^{1}P_1$ trans...
July 27, 2005
We demonstrate phase lock of two >1.6W Titanium:sapphire lasers with a phase noise of -138dBc/Hz at 1MHz from the carrier, using an intra-cavity electro-optic phase modulator. The residual phase variance is 2.5 10^(-8)rad^2 integrated from 1Hz to 10kHz. Instantaneous offset frequency steps of up to 4MHz are achieved within 200ns. Simultaneous atom interferometers can make full use of this ultra-low phase noise in differential measurements by suppressing common influences from...
April 2, 2012
We report on a simple and robust technique to generate a dispersive signal which serves as an error signal to electronically stabilize a monomode cw laser emitting around an atomic resonance. We explore nonlinear effects in the laser beam propagation through a resonant vapor by way of spatial filtering. The performance of this technique is validated by locking semiconductor lasers to the cesium and rubidiumD2 line and observing long-term reduction of the emission frequency dr...
May 15, 2017
We report on the Doppler-free saturation spectroscopy of the nitrous oxide (N$_2$O) overtone transition at 1.28~$\mu$m. This measurement is performed by the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) technique based on the quantum-dot (QD) laser. A high intra-cavity power, up to 10~W, reaches the saturation limit of the overtone line using an optical cavity with a high finesse of 113,500. At a pressure of several mTorr, the saturation d...
February 6, 2014
We demonstrate stabilisation of an ultraviolet diode laser via Doppler free spectroscopy of Ytterbium ions in a discharge. Our technique employs polarization spectroscopy, which produces a natural dispersive lineshape whose zero-crossing is largely immune to environmental drifts, making this signal an ideal absolute frequency reference for Yb$^+$ ion trapping experiments. We stabilise an external-cavity diode laser near 369 nm for cooling Yb$^+$ ions, using amplitude-modulate...
December 16, 2009
In a frequency-modulation spectroscopy experiment, using the radiation from a single frequency diode laser, the spectra of molecular iodine hyperfine structure near 640 nm were recorded on the transition $B^3\Pi_{0_u^{+}}-X^1\Sigma^+_{g}$. The frequency reference given by the value of the modulation frequency (12.5 MHz in given experiment) allows determination of the frequency differences between hyperfine components with accuracy better than 0.1 MHz using the fitting procedu...