December 8, 2023

Vladimir LPENS, Paris Kazakov, Evgeny LIMS, London and LPENS,
Paris Sobko, Konstantin Nordita and Royal Inst. Tech., Stockholm and Bohr
Inst. Zarembo

We report the explicit solution for the vacuum state of the two-dimensional $SU(N)$ Principal Chiral Model at large-$N$ for an arbitrary set of chemical potentials and any interaction strength, a unique result of such kind for an asymptotically free QFT. The solution matches one-loop perturbative calculation at weak coupling, and in the opposite strong-coupling regime exhibits an emergent spacial dimension from the continuum limit of the $SU(N)$ Dynkin diagram.

Similar papers 1

89% Match

Vladimir A. Kazakov

We present the exact and explicit solution of the principal chiral field in two dimensions for an infinitely large rank group manifold. The energy of the ground state is explicitly found for the external Noether's fields of an arbitrary magnitude. At small field we found an inverse logarithmic singularity in the ground state energy at the mass gap which indicates that at $N=\infty$ the spectrum of the theory contains extended objects rather than pointlike particles.

March 17, 1994

88% Match

V. A. Fateev, V. A. Kazakov, P. B. Wiegmann

We present the exact and explicit solution of the principal chiral field in two dimensions for an infinitely large rank group manifold. The energy of the ground state is explicitly found for the external Noether's fields of an arbitrary magnitude. The exact Gell-Mann - Low function exhibits the asymptotic freedom behaviour at large value of the field in agreement with perturbative calculations. Coefficients of the perturbative expansion in the renormalized charge are calculat...

87% Match

Vladimir Kazakov, Evgeny Sobko, Konstantin Zarembo

We initiate a systematic, non-perturbative study of the large-$N$ expansion in the two-dimensional $\text{SU}(N)\times \text{SU}(N)$ Principal Chiral Model (PCM). Starting with the known infinite-$N$ solution for the ground state at fixed chemical potential \cite{Fateev:1994dp,Fateev:1994ai}, we devise an iterative procedure to solve the Bethe ansatz equations order by order in $1/N$. The first few orders, which we explicitly compute, reveal a systematic enhancement pattern a...

January 20, 2024

86% Match

Peter Baruch College and Graduate Center, City University of
New York Orland

The SU($N$) principal chiral model is asymptotically free and integrable in $1+1$ dimensions. In the large-$N$ limit, there is no scattering, but correlation functions are {\em not} those of a free field theory. We briefly review the derivation of form factors for local operators. Two-point functions for such operators are known exactly. The two-point function of scaling-field operators has the short-distance behavior expected from the renormalization group. We briefly discus...

86% Match

Paolo University of Pisa Rossi, Ettore University of Pisa Vicari

Analytical and numerical methods are applied to principal chiral models on a two-dimensional lattice and their predictions are tested and compared. New techniques for the strong coupling expansion of SU(N) models are developed and applied to the evaluation of the two-point correlation function. The momentum-space lattice propagator is constructed with precision O(\beta^{10}) and an evaluation of the correlation length is obtained for several different definitions. Three-loop ...

85% Match

B. Schlittgen, U. -J. Wiese

We formulate the two-dimensional principal chiral model as a quantum spin model, replacing the classical fields by quantum operators acting in a Hilbert space, and introducing an additional, Euclidean time dimension. Using coherent state path integral techniques, we show that in the limit in which a large representation is chosen for the operators, the low energy excitations of the model describe a principal chiral model in three dimensions. By dimensional reduction, the two-...

September 16, 1995

85% Match

Jerzy F. Plebanski, Maciej Przanowski, H. Garcia-Compean

It is demonstrated that the action of SU$(N)$ principal chiral model leads in the limit $N \to {\infty}$ to the action for Husain's heavenly equation. The principal chiral model in the Hilbert space $L^2(\Re^1)$ is considered and it is shown, that in this case the chiral equation is equivalent to the Moyal deformation of Husain's heavenly equation. New method of searching for solutions to this latter equation, via Lie algebra representations in $L^2(\Re^1)$ is given.

November 26, 2015

85% Match

Sebastien Leurent, Evgeny Sobko

We present a finite set of equations for twisted PCF model. At the special twist in the root of unity we demonstrate that the vacuum energy is exactly zero at any size L. Also in SU(2) case we numerically calculate the energy of the single particle state with zero rapidity, as a function of L.

August 25, 1999

85% Match

M. Tissier, D. Mouhanna, B. Delamotte

We investigate the principal chiral model between two and four dimensions by means of a non perturbative Wilson-like renormalization group equation. We are thus able to follow the evolution of the effective coupling constants within this whole range of dimensions without having recourse to any kind of small parameter expansion. This allows us to identify its three dimensional critical physics and to solve the long-standing discrepancy between the different perturbative approa...

85% Match

A. Armoni, M. Shifman

We consider the dynamics of a strongly coupled SU(N) chiral gauge theory. By using its large-N equivalence with N=1 super-Yang-Mills theory we find the vacuum structure of the former. We also consider its finite-N dynamics.